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Abstract

The equation of state of nuclear matter suggests that at suitable beam

energies the disassembling hot system formed in heavy ion collisions will pass

through a liquid-gas coexistence region. Searching for the signatures of the

phase transition has been a very important focal point of experimental endeav-

ours in heavy-ion collisions, in the last fifteen years. Simultaneously theoreti-

cal models have been developed to provide information about the equation of

state and reaction mechanisms consistent with the experimental observables.

This article is a review of this endeavour.
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I. INTRODUCTION

Heavy-ion collisions allow one to pump energy into a nuclear system. In central collisions
of equal size nuclei one can also create a significant amount of compression using high energy
nuclear beams. The possibility of studying nuclei far from normal conditions raises the
question: can we study phase transitions in nuclei similar, for instance, to the way, one can
study phase transition in water? This is the subject of the present article.

Two important phase transitions are being studied using heavy-ion collisions from
medium to very high energies. One phase transition occurs at densities that are subnor-
mal and at temperatures of a few MeV ( 1 MeV≈ 1010K). Nuclei at normal density and
zero temperature behave like Fermi liquids so that this transition is a liquid to gas phase
transition. The second phase transition of current interest is expected at a much higher
temperature (≈150 MeV) and at a much higher density (several times normal density) and
will be the subject of intense experimental investigation at the Relativistic Heavy Ion Col-
lider (RHIC) and at CERN in the coming decade. There one expects to see transition from
hadronic matter to a quark-gluon plasma. In very high energy collisions many new parti-
cles are created. This is a domain very much beyond the limits of non-relativistic quantum
mechanics with conservation of particles. Thus, we will not treat this phenomenon at all.
Instead at an energy scale of tens of MeV, we should be able to stretch or compress pieces
of nuclear matter and we expect to see Van der Waals type of behavior. As a Van der Waals
gas is considered to be a classic example of a liquid-gas phase transition, we have a situation
similar to that in condensed matter physics.

Unfortunately, the experimental conditions in the nuclear physics case are quite severe.
The collisions which produce different phases of nuclear matter are over in 10−22 seconds.
Thus, we can not keep matter in an “abnormal” state long enough to study the properties.
Furthermore, the detectors measure only the products of these collisions where all the final
products are in normal states. We have to extrapolate from the end products to what
happened during disassembly. This is a difficult task which complicates confirmation of
theoretical predictions.

This article is written so that it is suitable for nuclear physicists not specialised in the
area of heavy-ion collisions. We hope it is also accessible to non nuclear physicists since
the ideas are quite general and well-known from statistical physics. We hope practising
heavy-ion collision physicists will also find this a useful reference. The plan of the article
is as follows. Section II deals with early theoretical discussions which showed that well
established models predict that during disassembly after heavy-ion collisions bulk matter will
enter liquid-gas coexistence region provided the beam energies are suitably chosen. In Section
III an experimental overview is provided. Sections IV to IX bring us in contact with some
experimental results. Here we show, for example, how estimates of temperature or freeze-
out density are extracted from experiments. Sections X to XXII are primarily theoretical.
We introduce and develop some models; some we simply sketch without providing all the
details, as that would make the article extremely long.
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II. LIQUID GAS PHASE TRANSITION IN NUCLEAR MEAN-FIELD THEORY

Nuclear matter is an idealised system of equal number of neutrons N and protons Z.
The system is vary large and the Coulomb interaction between protons is switched off. For
light nuclei the Coulomb interaction has a very small effect and N=Z nuclei have the highest
binding energy. As nuclei get bigger the Coulomb energy shifts the highest binding energy
towards nuclei with N>Z. This brings into play the symmetry energy which is repulsive and is
proportional to (N-Z)2/(N+Z). Stable systems are scarce after mass number A=N+Z>260.
Thus no known nuclei approach the limit of nuclear matter. However, extrapolation from
known nuclei leads one to deduce that nuclear matter has density ρ0 ≈ 0.16fm−3 and binding
energy ≈16 MeV/A. We will choose an Equation of State (EOS) of this idealised nuclear
matter to examine if a liquid-gas phase transition can be expected and at what temperature
and density.

The following parametrisation, called the Skyrme parametrisation for the interaction
potential energy, has been demonstrated [1] to be a good approximation for Hartree-Fock
calculations. We take the potential energy density arising from nuclear forces to be

v(ρ) =
a

2

ρ2

ρ0
+

b

σ + 1

ρσ+1

ρσ
0

(2.1)

Our unit of length is fm and unit of energy is MeV. In the above ρ0=0.16fm−3, a, b are
in MeV, a is attractive, b repulsive and σ is a parameter. The constants should be chosen
such that in nuclear matter the minimum energy is obtained at ρ = ρ0 with energy E/A=-
16 MeV. This fixes two of the three parameters and the third can be obtained by the
compressibility coefficient (nuclear physics has its own unique definition of compressibility
coefficient k∂p/∂ρ at ρ0). The Skyrme parametrisation is simple enough that we will write
down all the relevant formulae. From Eq.(2.1) the energy per particle as a function of density
ρ at zero temperature is given by

E

A
(ρ) =

a

2

ρ

ρ0
+

b

σ + 1
(

ρ

ρ0
)σ + 22.135(

ρ

ρ0
)2/3 (2.2)

In Eq.(2.2) the last term on the right hand side is the zero-temperature Fermi-gas value for
kinetic energy. The pressure due to the interaction at zero or any temperature is

p = [
a

2

ρ

ρ0

+
σb

σ + 1
(

ρ

ρ0

)σ] × ρ (2.3)

The condition that E/A minimise at ρ/ρ0 = 1 gives

a

2
+

bσ

σ + 1
+ (2/3) × 22.135 = 0 (2.4)

The condition that E/A is -16 MeV at ρ0 gives

− 16 =
a

2
+

b

σ + 1
+ 22.135 (2.5)

Lastly, compressibility is given by
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k = 9 × (a + σb +
p2

F

3m
) (2.6)

The EOS for the Skyrme parametrisation with a=-356.8 MeV, b=303.9 MeV and σ=7/6
(this gives k = 201MeV) is shown in Fig. 1. In the figure isotherms are drawn for various
temperatures (10, 12, 14, 15, 15.64 and 17 MeV). The pressure contributed by kinetic
energy was calculated in the finite temperature Fermi-gas model. The similarity with Van
der Waals EOS is obvious; for a more quantitative comparison we refer to Jaqaman et. al
[2]. With the parameters chosen here the critical temperature is 15.64 MeV. The spinodal
region (∂p/∂ρ < 0) can be seen clearly. The coexistence curve which is shown in the figure
is obtained using a Maxwell construction [3].

Fig. 1. Nuclear matter equation of state with Skyrme interaction with compressibility
201 MeV. In ascending order the isothermals are at temperatures 10, 12, 14, 15, 15.64
(critical isotherm) and 17 MeV. The coexistence curve obtained from a Maxwell construction
is shown. The vertical line is drawn at assumed freeze-out density 0.04 fm−3. The dot-dash
line is obtained by assuming that the excited system expands isentropically (see Fig.2). This
is an idealisation.

We now describe how in heavy-ion collisions one will sweep across the p − ρ plane.
In heavy-ion collisions one distinguishes between spectators and participants. Imagine two
equal ions colliding at zero impact parameter. Some highly excited nucleons are emitted first.
The other nucleons are called participants because each nucleon will collide with at least one
nucleon in its path if all nucleons are assumed to move in straight line paths. In peripheral
collisions where the impact parameters are non-zero, nucleons outside the overlapping zone
would not have collided with nucleons from the other nucleus. These “non-interacting”
nucleons are defined as spectators. For the same beam energy much more energy is pumped
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into the participating zone. There will even be compression in this zone if the excitation is
very high. Spectators are only mildly excited. They are excited for many reasons: highly
non-spherical shapes, unfavourable N/Z ratios, migration from participants etc.. In general,
spectators should have little compression. Both central and peripheral collisions have been
studied to find signals of phase transitions.

Imagine then, as a result of heavy-ion collisions, nuclear matter has been excited to a
high temperature, with or without compression. Looking at Fig. 1 we see that the pressure
will be positive and matter will begin to expand [4–6]. The exit path is hard to guess but the
simplest expectation supported by transport models is that it is approximately isentropic in
the beginning part of the expansion. However, if the system reaches the spinodal region, the
mean-field description is inappropriate and the system is expected to break up into chunks.
In Fig. 1 we have nonetheless followed the isentropic trajectory. Expansion continues till it
reaches a freeze-out volume, a theoretical idealisation. Once the freeze-out volume is reached
there is no exchange of matter between different fragments. Since the fragments are still
hot, they will get rid of their excitation by evaporation (sequential two body decays [7,8])
before they reach the detector. The freeze-out density is significantly lower than the normal
density. It is probably not as low as one-tenth the normal density because interactions
between fragments (except for Coulomb forces) will cease well before that. The freeze-out
density is often a parameter in the theory adjusted to get the best fit and is model dependent.
The ‘best’ choice seems to be always less than half the normal density. In Fig. 1 we have
shown this arbitrarily to be ρfr = 0.04fm−3, that is, one-quarter of normal nuclear density.

Normally, the EOS is drawn with isotherms but some additional insight can be gained
by looking at isentrops [6]. For this we refer to Fig. 2 where we have drawn, for the
same Skyrme interaction, E

A
(ρ) and p(ρ) but now for constant entropy instead of constant

temperature.
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Fig.2. For the same Skyrme interaction as used in Fig.1, we draw E
A

(ρ) and p(ρ) but
now for fixed entropy rather than fixed temperature. The vertical dashed line is along
normal nuclear density. We consider disassembly of an excited spectator. If the system
starts from E/A ≈ −2MeV (entropy 1.86 per particle), the initial pressure is positive and
it begins to expand (in this idealisation) along the isentrop. The thermal E/A will fall, and
to compensate, collective velocity will develop. This collective velocity will take the system
beyond the minimum of E/A and drive it to the region of spinodal instability. For small
excitation energy and entropy(0.76) the system starts with positive pressure but does not
attain enough collective velocity to reach the spinodal region. It will de-excite by sequential
decay.

Imagine then an excited spectator is formed at normal density indicated by the vertical
dashed line. Let us focus on two isentrops, S/A=1.86 and S/A=0.76. In the first case the
system starts with E/A ≈ −2 MeV and positive pressure. It will begin to expand; the value
of “thermal” E/A as it expands along the isentrop, drops. For conservation of energy it
must then develop a collective flow. This collective flow will take it beyond the minimum
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of E/A and drives it to the spinodal region. For the isentrop with value 0.76, even though
it starts with positive pressure, it does not gain enough collective energy to drive it to the
spinodal region. It will therefore oscillate around zero pressure and has to de-excite by other
means ( two-body decay [7]). The intermediate case with S/A= 1.39 just makes it to the
spinodal region.

It is also clear both from Fig. 1 and Fig. 2 that if the starting point is too high (i.e., too
much excitation energy) the system will entirely miss the liquid region and probe only the
gas region at the time of dissociation. This was the case at Bevalac [9] (incident energy in
GeV) where the goal of studying heavy-ion reactions was quite different.

While mean-field theory, as described above, easily leads to a liquid-gas phase transition
picture, one clearly needs to go much beyond. There is hardly any observable that one
can calculate using mean-field theory alone. Most common experimental observables are
the clusters, their compositions, their excitations, velocities etc. Mean-field theory does not
give these values although it suggests that the system must break up because of spinodal
instability. However, with the Maxwell construction obtained from the mean-field EOS one
can draw a coexistence curve (Fig. 1) and this has experimental relevance. As we will
describe in much greater detail later, one may measure the caloric curve [10] defined as T
vs. E∗/A in heavy ion experiments. The experiment gives a measure of the specific heat,
dE∗/dT in the vicinity of temperature 5 MeV. Indeed many models ( to be described in
later sections) produce a peak in the specific heat at about this temperature. The peak
is reminiscent of the crossing of the coexistence curve [11]. These models are also able to
calculate many other observables with reasonable success. Let us refer to Fig.1 to see where
we would expect to see the peak in mean-field theory. If we consider the freeze-out density
to be 0.04fm−3, the intersection of the 0.04fm−3 line and the coexistence curve suggests a
temperature of about 15 MeV. This “boiling” temperature will come down if a lower freeze-
out density is used but even at one tenth the normal density the boiling temperature is still
12 MeV. Since we have used nuclear matter theory, the temperature is expected to be lower
due to finite particle number and Coulomb interaction. In ref [2] and later in [12], the effect
of finite particle number was estimated to be significant. In addition we must remember
that mean-field theories normally overestimate the critical temperature. For example, in
the Ising model, this overestimation is about 50 per cent [13]. In mean-field Thomas-Fermi
theory that includes the Coulomb interaction De et. al. [14] find the peak in specific heat at
10 MeV for 150Sm. Without the Coulomb interaction, in bulk matter with the same isospin
asymmetry as 150Sm, the peak is located at 13 MeV. As will be described in greater detail
later, both experimental data and more realistic models point to much lower temperature.
Thus in mean-field theory interesting things seem to happen at too high a temperature.

III. EXPERIMENTAL OVERVIEW

Experimentally the following features are well known. At excitation energy ǫ ≈ 1
MeV/nucleon, successive emissions of particles by evaporation of the compound nucleus
or its fission are the basic deexcitation mechanisms. The picture can be justified by say-
ing that there is enough time between successive emissions so that the nucleus can relax
(τre ≈ 2R/cs) to a new equilibrium state where R is the radius of the compound nucleus
and cs is the velocity of sound. At ǫ ≈ 3 MeV/nucleon, the time interval between successive
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emissions is comparable with τre. At excitation energy comparable to binding energy ǫ ≈ 8
MeV/nucleon the very existence of a long-lived compound nucleus is unlikely which leads
to the scenario of an explosion-like process involving the whole nucleus. This will lead to
multiple emission of nuclear fragments of different masses. This is what is called “multifrag-
mentation” where ‘multi’ is more than two. Associated with multifragmentation is a term
Intermediate Mass Fragment (IMF) that we will use often. This refers to particles with
charge Z between 3 and 20 to 30. The lower charge limit is set to 3 because of exceptional
binding of the alpha particle. The upper limit is set not to include fission like fragments;
if the nucleus broke up into several chunks in the spinodal region, we could expect some
of them to be IMF’s. In the mean-field scenario described earlier, multifragmentation is
associated with the co-existence region. Thus, it is considered to be the most promising ex-
perimental observable to study the liquid-gas phase transition in nuclear matter. However,
while phase transition signals will always be weakened by finite particle number effects, mul-
tifragmentation is usually found at the appropriate energy and occurs in nuclear collisions
even when the thermodynamic limit is not reached. Thus multifragmentation is a more
general process than phase transition.

In the co-existence region, light particles such as neutrons, hydrogen isotopes (p, d, t) and
helium isotopes (3He, 4He, 6He) are considered as gas while the IMF’s are treated as droplet
forms of the liquid. In collisions where larger residues remain, they are the liquid remnants
from the original colliding nuclei. Since nuclei are two-component systems consisting of
neutrons and protons, the isotopic contents of the gas and the liquid phase will be different.
This is specially so when bound nuclei of smaller sizes are usually found along the valley of
stability and have nearly equal number of protons and neutrons. Thus if the initial collisions
consist of heavy nuclei which have more neutrons than protons, one would expect the excess
neutrons to diffuse out to the gas region resulting in a neutron enriched nucleon gas. This
has already been seen in experiments and will be discussed later. Thus a preliminary glimpse
of the phase transition in nuclei suggests a much richer structure than what has been implied
by nuclear matter alone.

Multifragmentation was seen in high-energy proton-nucleus collisions [15–18] before sys-
tematic studies were undertaken in nucleus-nucleus collisions. For a proton incident on a
nucleus the picture is as follows. Shortly after the collision between the proton and the
target nucleus, several prompt nucleons leave the system and carry off much of the energy
of the collision. At low incident proton energies only remnants near the mass of the target
are produced. For incident proton energies around 0.5 GeV, the system undergoes fission
leaving two large fragments. When the incident proton energies are between 1.0 GeV and
10 GeV, the cross-section for multifragmentation rises by an order of magnitude. At ener-
gies above 20 GeV the cross-section becomes independent of energy, reaching the limiting
fragmentation region.

Systematic studies of multifragmentation have been undertaken using heavy-ion beams
since the mid eighties, when these beams became routinely available and large detection
arrays were built. The production of fragments from central collisions reaches a maximum
around 100A MeV. In the following section we will examine various aspects of the multi-
fragmentation process, which may be employed to signal the liquid-gas phase transition.
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IV. EVENT SELECTION

Most early multifragmentation experiments are inclusive measurements [15–20], i.e. par-
ticles are identified with no requirements that other particles from the same event should
be detected in coincidence. These types of experiments do not provide information about
the collision dynamics or properties of the emission sources from the nuclear reaction. Since
multifragmentation of spectators, produced in peripheral collisions has different character-
istics from fragments emitted from the participant zone formed in central collisions, it is
important that the emission sources be identified. There are both advantages and disadvan-
tages of using central or peripheral collisions to find the signals of phase transition. In this
section, the methods used to select central and peripheral collisions will be discussed.

A. Central Collisions

In central collisions, the excitation energy pumped into the participant zone is higher
and the source characteristics, i.e. selection of a single source, can be accomplished easily
with large detector arrays which provide nearly 4π angular coverage. Intuitively, one expects
more particles to be produced in violent or central collisions than peripheral collisions. Thus
the number of emitted particles can be related to the collision geometry and the simplest
observable is the number of charged particles detected, Nc. There are variations of the
observable Nc, such as the hydrogen multiplicity, N1 or light charge particle multiplicity,
NLCP . All these observables work reasonably well in distinguishing central collisions with
small impact parameters from peripheral collisions [21]. However, the neutron multiplicity,
Nn [22] and the IMF multiplicity, NIMF [23] do not work as well. Aside from multiplicities,
there are other observables such as the mid-rapidity charge, Zy, [24] and the total transverse
kinetic energy, Et, of the identified particles [25], which can be used as an impact parameter
filter. Zy is the summed charge of particles with rapidity between that of the target and
projectile. This quantity reflects properties of the participant zone. The total transverse
energy is defined as Et =

∑

i Eisin
2θi =

∑

i(pisinθi)
2/2mi where Ei, pi, and θi denote the

kinetic energy, momentum and emission angle of particle i with respect to the beam axis.
The most common way to relate an experimental observable to the impact parameter

is to assume a monotonic relationship between the observable and the impact parameter
[26,21]. In general, a reduced impact-parameter scale, b̂ which ranges between 0 (head-on
collisions) to 1 (glancing collisions), is defined as

b̂ = b(X)/bmax = (
∫ ∞

X
[dP (X ′)/dX ′]dX ′)1/2 (4.1)

where X = NC , N1, Nn, NIMF , NLCP , Et, Zy, dP (X)/dX is the normalized probability distri-
bution for the measured quantity X, and bmax is the maximum impact parameter for which
particles were detected in the near 4π detection array.

For illustration of the impact parameter determination, the top panel of Fig.3 shows
the charged particle multiplicity distribution of the 84Kr induced reaction on 197Au at 35
MeV per nucleon incident energy [27]. The bottom panel shows the relationship between
the reduced impact parameter, b̂, and Nc with a lower cut of Nc > 2 applied in the analysis.
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Fig. 3: (Top) Charged particle multiplicity distribution of the 84Kr induced reaction on
197Au at 35 MeV per nucleon incident energy. (Bottom) b̂ as a function of Nc [27].

While Nc is the most simple observable to measure the impact parameters, it is not
very precise due to fluctuations and geometric efficiencies of the detection device . In cases
where the single source from the central collision needs to be better defined or determined,
additional constraints are applied. In head-on collisions, the angular momentum transfer
is zero and all the emitted particles are emitted isotropically in the azimuthal angle [28].
Thus additional constraints on central collisions can be placed by requiring the detected
particles to have isotropic emission pattern. Other constraints include requiring the total
charge detected to be a substantial fraction of that of the initial system [29], the ratio of
total transverse momentum to longitudinal kinetic energy or by requiring the velocity of the
emitted particles to be about half of the center of mass velocity [24,30]. Obviously, each ad-
ditional constraint reduces the number of events available for analysis. Too many constraints
may reduce the data to the extreme tails of the distributions where large fluctuations of the
observable become a problem.
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During the compression stage, pressure in the central region causes the participant zone
to expand [31]. Thus part of the available energy in central collision is converted to collective
energy such as radial flow which expands outward, or transverse flow caused by the spectators
being pushed by the participant region to the side, and the squeeze-out of nucleons from
the participant region perpendicular to the reaction plane due to blocking by the spectators
[32]. Clearly, all these collective motions strongly affect the signals of the phase-transition
observed in central collisions and reduce the amount of excitation energy available for heating
up the system. They must be understood and taken into account in the study of phase
transition.

B. Peripheral Collisions

Theoretically, spectators should be less affected by the effects of collective motion than
the participants. The collision kinematics focus the emitted fragments from the projectile
to the forward direction in the laboratory. These fragments are generally detected with
spectrometers or detectors placed at forward angles and the charges, velocities etc. are
identified. The decay of a projectile spectator is easier to study experimentally than the
target spectator which is emitted backward with very low energy in the laboratory frame.

Unlike central collisions, the impact parameter is strongly correlated with the size of
the source in peripheral collisions. Thus the size of the projectile-like residue such as the
charge, ZPLF , provides some indication of the impact parameter [33]. In the case where
most of the projectiles fragment into many small pieces, the quantity Zbound defined as the
sum of atomic numbers Zi of all fragments with Zi ≥ 2 has been found to be a good measure
for impact parameter [34]. It represents the charge of the spectator system reduced by the
number of hydrogen isotopes emitted during its decay and thus, it is the complement of the
hydrogen multiplicity, N1. In an experiment where both Zbound was measured by the forward
spectrometer and Nc was measured by a 4π array in the reaction of Au+Au at E/A=400
MeV, the two observables are anti-correlated [35]. Thus, like Nc and other observables
discussed in previous section, Zbound can be used in eq.(4.1) to provide a quantitative measure
of the impact parameter.

V. EVIDENCE FOR NUCLEAR EXPANSION

Around incident energy of 50A MeV, fragment multiplicities increase with the size of
the emission source and excitation energy. In examining reactions of Xe on various targets,
12C, 27Al, 51V, natCu, 89Y and 197Au, even though the targets span a range of N/Z from
1.0 to 1.5, a near-universal correlation has been observed between the average number of
emitted IMFs, < NIMF >, and the charge-particle multiplicity, Nc, for non- central collisions
[36]. Fig.4 shows the mean number of IMF detected in the collision of 129Xe+197Au at 50A
MeV as a function of the detected charge particle multiplicity, Nc [37]. In the most central
collision, Nc >33, the mean number of < NIMF > is 7 but up to 14 IMF fragments have
been observed. The large fragment multiplicities cannot be reproduced by the break-up of
the hot system at normal nuclear matter density with either the dynamical or statistical
models. (Predictions of various statistical models are lower than the data as shown by the
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dashed lines, open circles and crosses.) Calculations requiring expansion to less than 1/3 of
the normal nuclear matter density is needed to explain the large increase in < Nimf > as
shown by the solid lines.

Fig. 4: The mean number of IMF detected NIMF in the collision of 129Xe+197Au at 50A
MeV as a function of the detected charge particle multiplicity, Nc. Data are represented by
the solid points. The dashed lines, open circles and crosses are data from various statistical
models assuming normal nuclear matter density. They all under-predict the number of IMF
emitted. The solid lines are calculations from an expanding nuclear system. See [37] for
more details about the calculations.

If the hot nuclear system expands, the “radial” component of the velocity should be
evidenced in the particle energy spectra. Without the influence of radial expansion, the
energy spectra resulting from the collision of a target and projectile at intermediate energy
are composed of three isotropically emitting thermal sources corresponding to the projectile-
like and target- like spectators in addition to the participant region formed by the overlap
of the projectile and target. Instead, the IMF and light particle energy spectra from the
central collisions of Au+Au reaction show a shoulder like shape [38,39]. To fit the energy
spectra, large radial expansion velocities are required in addition to the three sources [38,39].
Similarly, the mean kinetic and transverse energy of emitted fragments also provide measure
of the radial collective velocities when compared to the predictions of thermal models [40–42].
Fig.5 shows a nearly linear relationship between the radial velocities with the incident energy
[40]. The plot suggests that 30% to 60% of the available energy is used in the radial
expansion. This energy is thus not available for thermal heating of the nuclear matter.
Evidence for the “nuclear expansion” of the hot nuclear systems is a necessary but not
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sufficient condition for the occurrence of a liquid-gas phase transition.

Fig. 5: Systematics of average radial velocity as a function of incident energy for various
systems [40].

VI. SPACE-TIME DETERMINATION

The average radial velocity plotted in Fig.5 indicates that the nuclear expansion occurs
in a rather short time (10−22 second). As a result of the fast expansion, the density of the
reaction zone is below normal nuclear matter density. Information about the space-time
evolution of the reaction zone can be obtained via intensity interferometry. The principle
behind such experiments is similar to the intensity interferometry [43] employed to determine
the radius of stars, where both singles (Yi) and coincident (Y12) yields of photons from the
same source (star) are measured. Intuitively, one expects the correlation to be small if the
source size is large and a large correlation from a small source. In nuclear physics, particles
are detected instead of photons. A correlation function constructed from these yields is
defined as, 1 + R(p1, p2) = Y12(p12)/(Y1(p1)Y2(p2)) where pi is the laboratory momentum
of particle i. At large relative momenta where the final interaction is negligible, R(p1, p2)
should be zero. Unlike astronomy where the space-time evolution of stars is slow, the time
scale involved in nuclear physics is very short. Thus there are ambiguities in determining
the size and time-scale of nuclear reactions using intensity interferometry, because a small
source emitting over a long period of time behaves like a large source emitting over a short
period of time [44].
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The space-time information of the emitting source can be obtained by measuring the
correlation function. An example of the fragment-fragment correlation from the Ar+Au
reaction at E/A=50 MeV is shown in Fig.6 [45] as a function of the reduced velocity, vred =

vrel/
√

(Z1 + Z2) where vrel is the relative velocity between fragment 1 and 2. The use of
vred allows summing over different combinations of fragment-fragment correlations. Basic
features of the correlation functions for different particle pairs depend on details of the final
state interaction between the two particles. For intermediate mass-fragments, the most
important interaction is the Coulomb interaction between the particles as shown by the
suppression of the correlation functions at small vred. However, if the fragments are emitted
in the vicinity of a heavy reaction residue, the Coulomb interaction with the residue may
not be neglected [46]. This space-time ambiguity is illustrated by the calculations shown as
lines in Fig.6 [45].

Fig. 6: The fragment-fragment correlation from the Ar+Au reaction at E/A=50 MeV

is shown as a function of the reduced velocity, vred = vrel/
√

(Z1 + Z2) where vrel is the

relative velocity between fragment 1 and 2 [45]. The lines are Monte Carlo simulations of
many body Coulomb trajectory calculations of fragments emitted from a spherical source of
radius Rs and lifetime τ .

The calculations are Monte Carlo simulations of many body Coulomb trajectory calcula-
tions of fragments emitted from a spherical source of radius Rs and lifetime τ . The data are
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equally well described by calculations using four different combinations of Rs and τ as shown
in the figure. Even with this ambiguity, the “valley” exhibited at low vred provides some
measure of the space-time extent of the source. As the energy increases, the width of this
“valley” increases suggesting emission from a smaller and may be a faster source. In order
to get more definite results about the emission time, information about the source size must
be obtained independently. Such information is most commonly extracted by comparing
predictions with data and thus is model dependent. For example, assuming that the source
sizes can be obtained from the linear momentum transferred to the system, one can ob-
tain the emission time from fragment-fragment correlation functions. The left panel of fig.7
shows the dependence of mean emission time as a function of incident energy for the system
Kr+Nb [47]. Above 55 MeV per nucleon, multifragmentation seems to occur in a time scale
that saturates at ≈125 fm/c. The result is consistent with breakup of a fragmenting source
at low density including those driven by Coulomb instabilities as in the Au+Au reaction
at E/A=35 MeV [42]. In the latter experiment, the source size was obtained by compar-
ing various experimental observables to the prediction of the statistical multifragmentation
model. Recent analysis of the IMF correlation functions from high energy hadron induced
multifragmentation suggests the saturation time occurs at much shorter time scale (<100
fm/c) as shown in the right panel of fig. 7 [48]. Considering the space-time ambiguity and
model dependence in extracting the time information, the correlation analysis is probably
not reliable in extracting a time scale less than 50 fm/c.
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Fig. 7: Dependence of mean emission time as a function of incident energy for the
system Kr+Nb [47] (Left panel) and as a function of excitation energy for hadron induced
multifragmentation (right panel) [48].

Without precise time information, quantitative measurements of freeze-out densities have
been difficult to obtain, since the density is quite sensitive to the emission time and volume
of the source. Assuming zero lifetime, the density or source sizes can be obtained from
light charged particle correlation measurements [49–51]. The left panel of Fig.8 shows the
radii extracted for different reactions using the p-p correlation as a function of the proton
velocity normalized by the beam velocity. The middle data set with lots of data points are
experimental results from the 16O and 14N induced reaction on Au. The solid diamonds
and solid circles are radii extracted from the 40Ar induced reaction on Au and 3He induced
reaction on Ag, respectively. The dot-dashed and the dash lines are scaled from the solid
lines by the radii of the projectile. At high velocity where the protons originate from the
projectile, the scaled predictions agree with the data very well, suggesting that the method
of using p-p correlations to extract source size information is consistent within the same
method.

16



Fig. 8: This shows the radii extracted for different reactions using the p-p correlation as
a function of the proton velocity normalized by the beam velocity. The open symbols are
radii extracted from 16O and 14N induced reactions on Au. The solid line is the interpolation
of this set of data. The solid diamonds and solid circles are radii extracted from the 40Ar
induced reaction on Au and 3He induced reaction on Ag, respectively. The dot-dashed and
the dash lines are scaled from the solid lines with the radii of the projectile [50]. The right
panel shows the radii deduced from the p-p, p-α, d-α correlations as a function of Zbound for
the projectile fragmentation of Au+Au at E/A=1000 MeV [51].

The right panel of Fig.8 shows the radii deduced from the p-p [solid squares], p-α [open
stars], d-α [open squares] correlations as a function of Zbound for the projectile decay of
Au+Au collisions at E/A=1 GeV. The radii obtained from the p-p correlation are smaller
than the radii obtained from p-α correlations which are in turn smaller than the radii
obtained from d-α correlations. There is no logical explanation for such an observation.
The inconsistencies of the measurements, regarding the different radius values obtained from
different particle correlations, illustrate the present experimental difficulties in extracting the
precise values of the freeze-out densities since the analysis is highly model dependent. Other
methods, such as comparing IMF multiplicities or mean kinetic energies with statistical
models have been employed to determine the source sizes [42]. Independent of different
analysis methods, densities lower than 1/3 of the normal nuclear matter density provide
the best agreement with the data. Consistent with such a conjecture, models that assume
normal nuclear matter density underpredict the fragment multiplicities [37,52–54].

Considering the complexities of the issue, the available experimental data suggest a time
scale for the multifragmentation process of the order of 100 fm/c and density values of
less than a third of the normal nuclear matter density. Obviously, it is desirable to have
more exact values. Further experimental work and better understanding of the reaction
mechanisms in the coming years will allow more precise measurements in this area.

VII. TEMPERATURE MEASUREMENTS

A. Kinetic Temperatures

How valid is the concept of temperature in heavy ion reactions? Long before inter-
mediate energy collisions which are best described by multifragmenation mechanisms, the
concept of temperature was being used routinely to describe heavy ion collisions at Be-
valac (see for example [16]). In cascade [55] or transport calculations [56] one can follow
in microscopic models how the original ordered motion of the beam gets dispersed into a
Maxwell-Boltzmann distribution through two-body collisions. In the Purdue experiment
of proton on Xe [18], the high energy tails of the kinetic energy spectra provide evidence
that the fragments originate from a common remnant system somewhat lighter than the
target which disassembles simultaneously into a multibody final system. Theoretically, the
slopes of the particle kinetic energy spectra assuming a Maxwellian distribution, should be
sensitive to the initial temperature.

d2σ

dEdΩ
= N0(E − Vc)

1/2. exp(−Es/Tkin) (7.1)
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where Es = E − Vc + E0 − 2[E0(E − Vc)]
1/2cos(θ) Here N0 is a normalization constant; E

and m are the energy and mass of the emitted particle; θ is the detection angle relative to
the incident beam; Tkin is the slope or kinetic temperature; E0 = mv2

0/2; and Vc corrects
for the Coulomb repulsion from the target residue. As discussed earlier, collective motions
complicate the energy spectra. Furthermore, fluctuations in Coulomb barriers, sequential
feedings from higher-lying states [57], Fermi motion [58] and pre-equilibrium emissions all
contribute to the complications associated with extracting emission temperatures from the
energy spectra.

B. Excited state temperature

To circumvent some of these problems, other thermometers, which are less sensitive to
the collective motion, have been sought. Thermometers based upon the relative populations
of excited states of emitted light particles have been used quite extensively in extracting the
temperatures of the hot nuclear systems.

T =
E1 − E2

ln(a′Y1/Y2)
(7.2)

Here a′ = (2J2 + 1)/(2J1 + 1), Ei is the excitation energy, Yi is the measured yield and Ji

is the spin of the state i. To minimize the influence of sequential decays, nuclei with levels
that are widely separated are often chosen [59]. One of the most commonly used nuclei is
the unstable 5Li isotope. The ground state 3/2+ decays to p and α particles while the 16.66
MeV 3/2+ excited state decays into d and 3He particles. Statistical models incorporating the
effect of sequential decays suggest that temperatures up to 6 MeV should be obtainable with
this nucleus based on the excited states population [60]. Other nuclei include α particles,
10B and 8Be which all have relatively widely separated states. Even though the ground
state and first excited state of the alpha particle are separated by 20.1 MeV, a substantial
part of the measured ground state alpha yields can be attributed to sequential decays from
heavy nuclei due to the unusual binding energy of the alpha particles. The consistency of
the method is normally checked by measuring the temperatures of several nuclei.

C. Isotope temperature

Another thermometer, Tiso, which utilizes the yield ratios of two pairs of isotopes have
been under intense study in the past few years [61,62]. If chemical and thermal equilibrium
are achieved, in the limit of the Grand Canonical Ensemble, one can obtain the isotope
temperature information from a double isotope ratio defined by

T =
B

ln(a(Y1/Y2)/(Y3/Y4))
(7.3)

where Y1, Y2 are the yields of one isotope pair and Y3, Y4 is another isotope pair. To cancel
the nucleon chemical potential terms, the mass number differences of isotope pair (1,2) must
be the same as the mass number differences of isotope pair (3,4); B is the binding energy
difference, B = BE1 +BE2 − (BE3 +BE4); a contains the statistical weighting factor. This
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equation assumes that the sequential decay corrections to the yields are negligible. This
assumption is rather problematic as the experimental measured yields are “cold” fragments
containing contributions from the decays of many excited nuclei. In experiments where a
large number of isotope yields are measured such as the proton induced reaction on Xe [18],
thousands of Tiso values can be extracted [63] using Eq.(7.3). If Eq.(7.3) is correct, all the
values of Tiso thus obtained should be the same. However, the experimental values fluctuate
over a large range of Tiso values, including negative numbers. These fluctuations arise from
sequential decays and can be minimized by selecting double ratios with large binding energy
differences (B > 10 MeV). However, such requirements select mainly isotope pairs that
involve proton rich isotopes such as 3He or 11C which are not well bound. Thus instead
of having many independent thermometers, there are in general two classes of isotopes
thermometers, those involving the (3He, 4He) pair and those using (11C, 12C) pair. The fact
that 3He and to a lesser extent 11C have been found to exhibit anomalous energy spectra
may invalidate the simple relationship of Eq.(7.3).

The difference in shape of the energy spectra between 3He and 4He means that the
isotope temperature depends on experimental energy thresholds. It has been shown that
the temperature depends strongly on the energy gates used [64–67]. This dependence has
been exploited to examine the evaporative cooling of the Xe on Cu collisions at E/A=30
MeV [65]. Since energy thresholds are often employed to minimize the contributions of the
pre-equilibrium emissions [66,67], this directly affects the temperature values measured.

D. Effect of Sequential decays

In recent years, many models have been developed to describe the emission of particles
from the multifragmentation process successfully. However, to compare with experimental
data, these models must take into account the effects of sequential decays. Inclusion of
nuclear spectral information into the calculations to simulate the effects of secondary decay
has not been fully successful because the task is not only computationally difficult, but
it is hampered by the lack of complete information about the resonances in many nuclei.
Fig.9 shows the effect of sequential feedings on the temperature determination using two
assumptions about the unstable states [68]. The horizontal axis is the emission temperature
used in the statistical calculations [60] while the vertical axis is the apparent temperatures
obtained using different classes of thermometers. In the left panel, sequential decay calcu-
lations including only known bound states and resonances are shown for Tiso(He-Li) and
T∆E(4He), denoted by the solid and dashed lines respectively. The apparent isotope tem-
peratures increase monotonically with the input temperature. With inclusion of continuum
states (right panel), both temperatures flatten out at an asymptotic value of about 6 MeV.
Thus, inclusion of sequential decay contributions from the continuum enhances decays to
low-lying states and renders temperatures involving alpha particles insensitive to the emis-
sion temperature at high excitation energy. For comparison, the calculated excited state
temperature of 5Li (dot-dashed line) is plotted in the right panel: T∆E(5Li) continues to
increase monotonically beyond 6 MeV emission temperature. The rate of increase becomes
much less only after 9 MeV temperature.
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Fig. 9: Effect of sequential feedings on the temperatures determination using two as-
sumptions on the unstable states [68]. In the left panel, sequential decay calculations in-
cluding only known bound states and resonances are shown for Tiso(He-Li) and T∆E(4He),
denoted by the solid and dashed lines repectively. With inclusion of continuum states (right
panel), both temperatures flatten out at an asymptotic value of about 6 MeV while the calcu-
lated excited state temperature of 5Li (dot-dashed line) continues to increase monotonically
until 9 MeV before flattening out [68].

Of course, the dependence of the apparent temperature on the emission temperature is
model dependent. When the sequential decay effect is large such as at high temperature,
reaction models with accurate description of the sequential decay processes are needed to
relate the measured temperature to the emission temperature. Efforts have been made to
include structural information to describe secondary decays. However, even with the best
code available, the disagreement between measured and predicted isotope yields could be a
factor of 10 or more especially for the neutron rich or proton-rich isotopes [69].

E. Cross-comparisons between thermometers

Cross-comparisons between different thermometers exist. In the case of kinetic tempera-
ture measurement, the slope of the energy spectra measured at backward angles and at low
incident energy give reliable temperature information for systems with low excitation energy.
Under these conditions, the collective flow effect and pre-equilibrium contributions are mini-
mized. At higher energy, the kinetic temperatures are not reliable but one can cross-compare
the isotope ratio and excited state temperatures [64,70–73]. Careful measurements of these
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temperatures in various systems suggest that below E/A=35 MeV, there are good agree-
ments between T∆E and Tiso [70]. However, the disagreement increases with incident energy
[71,73] as shown in Fig.10. For the system of Kr+Nb, temperatures obtained from excited
state populations and isotope yields have been measured as a function of the incident energy
[73]. The open symbols represent the temperatures extracted from the excited state popula-
tions of 5Li, 4He and 8Be respectively. Within experimental uncertainties, they are the same.
The consistencies of the experimental results from different nuclei render credence to this
thermometer. The closed symbols represent temperatures extracted from isotope yield ra-
tios; Tiso(HeLi), (closed squares) rely on the double ratio [Y(6Li)/Y(7Li)] /[Y(3He)/Y(4He)]
while Tiso(C-Li), (closed circles) use the double ratio [Y(6Li)/Y(7Li)] /[Y(11C)/Y(12C)].
Values for Tiso(C-Li) vary little with incident energy, similar to the trends exhibited by the
excited states temperatures of 5Li, 4He, and 8Be. In contrast, values of Tiso(He-Li) (closed
squares) increase monotonically with incident or excitation energy. Similar discrepancies
between T∆E and Tiso have been observed in Au + Au central collision from E/A=50 to
200 MeV [71], Ar+Sc reaction from E/A=50 to 150 MeV [75] and in Ar+Ni system [72] at
E/A=95 MeV.

Fig. 10: Excitation function of different thermometers for the system Kr+Nb. The solid
symbols are isotope ratio temperatures while the open symbols are temperatures extracted
from excited states populations [73].

Independent of models describing sequential decays, thermometers using alpha particles
(e.g. T∆E(4He),Tiso(He-Li)) should be affected by sequential decays in the same manner
and should give the same experimental temperature. However, current data [60,71,72] show
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that there are substantial differences between these two thermometers when the excitation
energy or incident energy increases. This may indicate that different reaction mechanisms
may be involved in the production of primary 3He and 4He particles. In such case, isotope
yield temperatures constructed from Eq.(7.3) are problematic.

F. Summary of temperature measurements

Fig.11 shows an overall picture provided by the present data using different thermome-
ters. The kinetic temperatures extracted from fitting the charged particle energy spectra
with an intermediate rapidity source exhibit a smooth trend over a wide range of incident
energies from a few MeV to nearly 1GeV per nucleons [74]. The open diamond points shown
in Fig.11 are the proton kinetic temperatures extracted from [74] over a narrow range of
incident energies for comparison purposes. The dashed lines are drawn to guide the eye. The
temperature values depend slightly on the particle types. However, the other light charged
particles, d and t, exhibit similar trends, namely, the kinetic energy temperature increases
rapidly with the incident energy. A collection of the T∆E(5Li) over a range of incident ener-
gies from 30 to 200 AMeV are plotted as solid points in Fig.11 [59,71,73]. Contrary to the
kinetic temperature, there is only a slight increase from 3 to 5.5 MeV, in the excited state
temperature as a function of the incident energy spanning over one order of magnitude.
The open circles in Fig.11 represent the most commonly used isotope ratio temperature,
Tiso(He-Li), [71,73,75] as a function of incident energy from 35 to 200 AMeV. The increase
from 4 to 10 MeV as a function of incident energy is much less than Tkin but the increase
is larger than the nearly constant value of T∆E(5Li). Tiso(C-Li) are plotted as open dia-
monds in Fig.11. This latter isotope thermometer does not agree with Tiso(He-Li). Instead,
Tiso(C-Li) remain relatively constant over the incident energy studied. They behave more
like the excited state temperature.
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Fig. 11: Excitation function of proton kinetic temperature, (open diamonds with dashed
lines drawn through the data), excited state temperature of 5Li (solid circles and solid line),
isotope ratio temperature of 3,4He and 6,7Li (open circles with dot-dashed lines) [76]

Experimentally, temperatures extracted from excited states or yield ratios involving car-
bon isotopes are around 4-5 MeV [77,59,73,69,63]. Around 4 MeV emission temperatures,
the secondary decay effects are small and can be corrected with current models incorporat-
ing sequential decays. The near constant temperature may signal enhanced specific heat.
However, if the low temperature of 4 MeV is caused by the limiting temperature due to se-
quential decays, it becomes difficult to deduce the freeze-out temperature from the measured
quantities.

VIII. EXCITATION ENERGY DETERMINATION

In nuclear physics experiments, the collision conditions are reconstructed from the par-
ticles detected. Even if all the emitted particles can be measured experimentally, it is still
difficult to disentangle the contributions from various emitting sources arising from the
spectator and participant zones. Before multifragmentation occurs, the hot systems first de-
excite by emitting neutrons and light charged particles (including very light IMF’s). These
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particles are normally emitted in the forward directions and in a very short time scale (<30
fm/c) before equilibrium is established. It is important that these pre-equilibrium particles
are not included in the determination of excitation energy characterizing the fragmenting
source.

Experimentally the contamination of the observables used in characterizing the emitting
source is very difficult to assess without the use of model assumptions. Cascade and trans-
port calculations can be used to estimate the number of particles emitted and the energy
lost in the “prompt” or early stage of the reaction. Such calculations may suggest some
optimum ways of estimating the number such as imposing energy thresholds on the data to
minimize the “pre-equilibrium” contributions [48,78]. However, the prompt contributions
cannot be completely eliminated from the data using the energy threshold gates. This in-
creases the uncertainties and fluctuations in the excitation energy determined. The model
calculations may also indicate the size, mass, N/Z ratio and energy of the residues which
undergo “multifragmentation”. Assume we can detect and identify all the particles emitted
from this excited source, conservation of energy suggests that

E∗ =
∑

Ei +
∑

En +
∑

Eγ + Q (8.1)

Where E∗ is the excitation energy, Ei is the kinetic energy of the charged particles, En

is the energy of the neutrons, Eγ is the energy of the gamma rays emitted during the de-
excitation and Q is the mass difference between the parent nucleus and all the emitted
particles. Gamma energies are relatively small and contribute little to the total excitation
energy compared to the other terms.

In reality, most experimental apparatus does not have a complete 4π coverage. Fur-
thermore, thresholds in energy and geometry exist in the detection arrays. Thus there are
uncertainties in determining the terms

∑

Ei and Q. More importantly, neutrons are often
not measured. Neutrons do not interact with matter as much as the charged particles so
they are more difficult to detect. Very often,

∑

En is estimated using the average number
of neutrons emitted and the mean neutron energy,

∑

En = Nn < En > [48,10,78]. Con-
servation of particles imposes some constraints on the value of neutron multiplicity Nn. As
the neutron data is difficult to obtain, the mean neutron energy < En > values are usually
adopted from other experiments or assumed to be the same as the proton mean energy.
Therefore in general,

∑

En poses the largest uncertainty to Eq.(8.1) and determination of
excitation energy of the fragmenting system becomes quite a difficult task.

Recently, intense effort has been placed in extracting the excitation energy of heavy
nuclei induced by high-energy hadron beams such as protons, pions and anti-protons at
high energy [79]. In these reactions, the collective excitation and existence of multiple
sources are minimal. Even with such ”simplified” systems, it is difficult to extract precise
excitation energy without the use of model assumptions. For heavy ion reactions, the task
is much more daunting. In addition, all collective motions strongly affect the signals of the
phase-transition and must be understood before exact values of the excitation energy can be
assigned. With so many uncertainties associated with extracting the excitation energy, any
experimental observables that utilize the fluctuations of excitation energy such as measuring
the heat capacities are subjected to the same problems [80]. The results must be viewed
cautiously. While more work is needed to determine the excitation energy accurately, one
consensus is that increasing incident energy corresponds to increasing excitation energy.
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It is quite common to extract the excitation enegy using projectile fragmentation. As-
suming that the projectile is only modestly excited, only one source, the projectile-like
residue, exists. Then the excitation energy of the projectile-like residue should be inversely
proportional to impact parameter. Thus it has been argued that Zbound, rather directly,
reflects the energy transfer to the excited spectator system [10]. Larger energy transfers,
then, correspond to smaller value of Zbound and vice versa. However, geometrical arguments
suggest that the source size also varies with impact parameter [81]. Furthermore, the en-
ergy spectra of light charged particles are inconsistent with one source but require multiple
sources to fit the spectra [73]. It is thus incorrect to assume that there are no contributions
from pre-equilibrium emissions. As discussed previously, collective flow also plays a role in
projectile fragmentation. Besides, all the uncertainties associated with Eq.(8.1) as described
above apply to these reactions.

Currently determination of the excitation energy presents the biggest challenge to the
experimenters. With care and the increasing availability of large neutron detection devices,
the excitation energy measurements will be improved in the coming years. A firm grip of
this parameter is very important in our understanding of the liquid-gas phase-transition.

IX. SIGNALS FOR LIQUID-GAS PHASE TRANSITIONS

Over the years, many experimental observables involving IMF have been used to study
the nuclear liquid-gas phase transition. Discussions of all the proposed experimental signa-
tures will require too much time and space. Instead, we will focus our discussions on four
experimental signatures, which have attracted most attention in the past years.

A. Rise and Fall of IMF

Copious emission of intermediate mass fragments is one predicted consequence of the
liquid-gas phase transition of nuclear matter, both by statistical models and transport mod-
els. At low excitation energy, few fragments are “evaporated” from the liquid while at very
high excitation energy, the liquid “vaporizes” to produce a nucleon gas. The “rise and fall”
of IMF multiplicities has been observed in both central and peripheral collisions. For central
collisions, maximum fragment productions occur around incident energy of 100A MeV as
shown in the left panel of Fig. 12 for the Kr+Au reaction [82]. At incident energy above
400A MeV, production of IMF shifts from central to more peripheral collisions [83,84]. The
right panel of Fig.12 shows the impact parameter dependence (obtained by measuring Zbound

for the fragmentation of Au projectiles at incident energy from 400 MeV to 1 GeV [83]. In
both panels of Fig.12, fragment multiplicities increase to a maximum with increasing ex-
citation energy. The fragment production then declines and “vaporizes” completely into
nucleons and light particles.
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Fig. 12: Rise and fall of IMF multiplicity as a function of incident energy for the central
collisions of Kr + Au (left panel) [82] and as a function of impact parameters for the projectile
multifragmentation of Au+Au reactions (right panel) [83].

B. Critical Exponents

The observation by the Purdue group [17] that the yields of the fragments produced in
p+Xe and p+Kr obeyed a power law Y (Af ) ∝ A−τ

f led to a conjecture that the fragmenting
target was near the critical point of liquid-gas phase transition. The origin of this conjecture
is the Fisher model [85] which predicts that at the critical point the yields of droplets will be
given by a power law. The power law has since then been established very firmly in collisions
between heavy ions [83] with the value of the exponent τ being close to 2. But the power law
is no longer taken as the ‘proof’ of criticality. There are many systems that exhibit this sort
of power law: mass distributions of asteroids in the solar system, debris from the crushing of
basalt pellets [86] and the fragmentation of frozen potatoes [87]. In fact, the lattice gas model
which has been used a great deal for calculations of phase transitions and multifragmentation
in nuclei [88,89] gives a power law at the critical point, on the coexistence curve (that is a
first order phase transition provided the freeze-out density is less than the critical density)
and also along a line in the T − ρ plane away from the coexistence curve. Nonetheless, the
occurrence of a power law is an experimental fact and it is therefore desirable that models
which aim to describe multifragmentation produce a power law, phase transition or not.
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Even if we expect to see a phase transition in nuclear collisions it is unlikely that the
system dissociates at the critical point. Much of the literature in intermediate energy heavy-
ion collisions assumes that when one is seeing a phase transition one is actually seeing
critical phenomena [90,91]. To reach the critical point one has to hit the right temperature
and the right density. While one may be able to hit the right temperature by varying the
beam energy, one has no control over the freeze-out density. Thus it is unlikely that the
dissociation takes place at the critical point. We think that this strong emphasis on critical
phenomenon rather than first order phase transition in nuclear multifragmentation came
about for several reasons. Firstly, the experimentally observed power law was interpreted in
terms of critical phenomena. Secondly, a bond percolation model [92–96] was among the first
to be applied to multifragmentation in nuclear collisions. This model has only a continuous
phase transition. The bond percolation model can be demonstrated to be a special case of a
lattice gas model [97] which is more versatile and has both first order phase transition and
critical phenomena.

An excellent review of the early history of this topic exists [98]. This covered the period
to the end of 1984. More recently, the study of the liquid-gas phase transition in nuclear
matter focuses more on measuring the thermodynamical properties, such as the temperature
and densities, of the disassembling system.

C. Nuclear Caloric Curve

Experimentally, production of particles in multifragmentation appears to be dominated
by their phase space [42,54,99]. Thus, one should be able to measure temperature and
densities, basic quantities in statistical physics. If the liquid-gas phase transition is of
first order, one would expect to see enhanced specific heat dE∗/dT corresponding to a
plateau region in the caloric curve defined as temperature, T vs. heat or excitation energy
E∗/A. Aside from the experimental difficulties associated with measuring both quantities as
discussed in sections 7 and 8, the simple caloric curve of temperature vs. excitation energy
with a plateau in the temperature assumes that the pressure is constant [100]. There is no
experimental evidence that such a condition is met in nuclear collisions. Thus even without
introducing the isospin degree of freedom, the caloric curves depend on three variables,
pressure, volume and temperature. Such complicated, three-dimensional nuclear caloric
curves have been recently calculated [101]. Different shapes of the caloric curves have been
obtained depending on the conditions of the experiments and analysis. Therefore, one-
dimensional caloric curves are useful only if the exact conditions can be determined or
modeled. By themselves, these curves can be misleading and definitely do not constitute a
signature for the liquid-gas phase transition even though the idea is very attractive.

One of the purposes of this review article is to examine the experimental efforts in
extracting the liquid-gas phase transition signals. Since many caloric curves have been
measured since 1995, we will discuss the experimentally obtained curves keeping the above
“warnings” in mind.

If the incident energy is assumed to be related to the excitation energy, (this is particu-
larly true for central collisions), then Fig.11, which is a plot of temperature versus incident
energy from E/A=30 to 200 MeV, is one form of caloric curve. It shows that the trend
depends highly on the specific thermometers chosen to measure the temperature; the kinetic
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temperature increases rapidly (from 12 to 30 MeV); the excited states temperatures are
nearly constant (from 3 to 7 MeV); the isotope temperatures involving He isotopes increase
moderately (from 4 to 10 MeV) but isotope temperatures involving 11C,12C stay nearly con-
stant at 4 MeV. Fig.11 sums up the most serious experimental problems we are faced with
i.e. the discrepancies in the temperature measurements. However, this figure also shows
that the excitation functions of the temperature measurement exhibit a smooth behavior
within each class of thermometer. Moreover, the trends are consistent from experiment to
experiment since the data shown in Fig.11 come from many different sources.

Fig. 13: Summary of caloric curves measured. The curves in the right panel have been
offset by 2 MeV for each successive curve, starting with Ar+Ni.

The more traditional caloric curves which plott temperatures versus the extracted ex-
citation energy are shown in Fig.13. In the left hand panel, all the curves are plotted on
the same scale. The temperatures obtained have been extracted using the isotope yield ra-
tios; Tiso(He-Li) are denoted by circles and Tiso(He-dt) are represented by the squares. To
avoid confusions, all the temperatures plotted are the experimental apparent temperatures
since sequential decay corrections are highly model dependent. Sequential decays account
for part of the differences between Tiso(He-Li) and Tiso(He-dt) and there are empirical cor-
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rection factors to reduce such differences. However, in this plot, the differences between
the curves constructed with Tiso(He-Li) or Tiso(He-dt) are much larger than the correction
factors. Thus, to keep the discussion simple, only the reported raw data are shown.

In order to view each successive curve better, they are re-plotted in the right panel with
a scale compressed by a factor of 2. Each curve is offset from from its predecessor by 2
MeV and the corresponding reactions are labelled close to the curves. The most interesting
curve is the one labeled “Au+Au” plotted at the bottom of both the right and left panels.
It was obtained from the spectator decays of the Au+Au reaction at E/A=600 MeV [10].
Tiso(He-Li), remains relatively constant as a function of deduced excitation energy, E*/A,
between 3 and 10 MeV but increases rapidly at E*/A greater than 10 MeV. The resemblance
to the first order phase transition of liquid raises a lot of excitement in the field. It also
resembles the prediction from the statistical model [102].

Unlike the predicted caloric curves from realistic models which will be discussed in more
details in Section XII or the temperature excitation functions of Figure 11, the experimental
caloric curves depend strongly on the reaction systems and analysis. (Due to the effect of
sequential decay, caloric curves determined from the experimentally extracted isotope yields
may not resemble the curves of the deduced primary fragments [67].) On the other hand,
if one ignores the highest excitation data point in the Au+Au system, all caloric curves
exhibit a smooth increase of temperature with excitation energy. This trend is very similar
to the increase of Tiso(He-Li) as a function of incident energy as shown in fig.11. However
in that case, the excitation function of the Tiso(He-Li) is nearly independent of reaction
systems, Au+Au, Kr+Nb and Ar+Sc reactions, measured by different experimental groups.
The differences in the curves shown in Figure 13 again point to the uncertainties associated
with the experimental procedures in extracting temperature and excitation energy.

All the caloric curves measured so far suffer from the same uncertainties in determining
the excitation energy. Some data may have better handle on the excitation energy because
of better detector coverage or simpler reaction mechanisms. For example, the caloric curves
obtained from the projectile fragmentation of Au, La and Kr on C, [67] have been extracted
with a time-projection chamber (EOS-TPC) where a complete reconstruction of the projec-
tile charge can be accomplished. The curves obtained from Au+C and Kr+C overlap very
nicely with each other even though the La+C system shows lower temperatures measured.
(The experimenters of Ref. [67] claim that the discrepancies observed in the temperatures
( 15%) are within the experimental uncertainties.) It is also encouraging to see that these
two curves overlap with the 3He+Au and 3He+Ag data which used similar procedures in
determining the temperatures and excitation energy [103].

Many of the extracted caloric curves do not agree with each other. Part of the differences
can be attributed to the energy thresholds applied to extract the isotope yields. The high
energy thresholds used in the A≈100 systems to isolate the prompt component [104] probably
account for the highest temperatures obtained in all the curves. For the Au+C, La+C,
Kr+C, [67] 3He+Au, and 3He+Ag [103] systems, assumptions have been made regarding
the pre-equilibrium contributions and the missing neutrons. Energy thresholds are used to
eliminate pre-equilibrium emissions. This might account for the relatively high temperatures
measured as compared to the temperatures extracted from Au+Au reaction. In the latter
case, the pre-equilibrium contributions were minimized using other methods and attempts
were made to extrapolate yields to zero energy thresholds.
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In the past year, some of the caloric curves have been revised [67] and others including the
original “caloric curve” data are being reanalyzed [10,105]. With more attention paid to the
experimental problems associated with determining these curves, some of the discrepancies
might be resolved in the near future. Future studies might extract other underlining physics
from these data. Without further understanding of the reaction dynamics and experimental
limitations, one should be extremely cautious in interpreting these curves as experimental
signatures for the liquid-gas phase transitions of nuclear matter.

D. Isospin Fractionation

Since nuclei are composed of neutrons and protons, isospin effects may be very important
for the nuclear liquid-gas phase transition [106]. As the asymmetry between neutron and
proton densities becomes a local property in the system, calculations predict neutrons and
protons to be inhomogenously distributed within the system resulting in a relatively neutron-
rich gas and relatively neutron-poor liquid [107–109]. The critical temperature may also
be reduced with increasing neutron excess reflecting the fact that a pure neutron liquid
probably does not exist [107]. While, recent calculations suggest that the rather narrow
range of isospin values available in the laboratory might not allow us to observe the decrease
in critical temperature [110], efforts are underway to study the fractionation of the isospin
in the co-existence region. As the isospin effects are not large, the influence of sequential
decays becomes important and may obscure the isospin fractionation effect one wishes to
study. To minimize such problems, isobar pairs, such as (t,3He), which have the same
number of internal excited states have been used. Some indications for isospin fractionation
are provided by the sensitivity of Y(t)/Y(3He) distributions to the overall N/Z ratio of the
system [33]. The ratios of Y(t)/Y(3He) also have been observed to decrease with incident
energies, in qualitative agreement with the predictions from the isospin dependent lattice
gas model [109,111,112]. Light isobars such as (t,3He) pair may suffer from contamination of
pre-equilibrium processes. Attempts have been made to use additional mirror isobar pairs
such as (7Li, 7Be) and (11B, 11C) [30].
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Fig. 14: Isobar ratios for three mirror nuclei obtained from the 112Sn+112Sn (open circles)
and 124Sn+124Sn (solid points) reactions [30]. The lines are drawn to guide the eye.

Fig.14 shows the isobaric yield ratios of 3 pairs of mirror nuclei as a function of the
binding energy difference, ∆B for two reactions, 112Sn+112Sn (open points) and 124Sn+124Sn
(solid points) at E/A=50 MeV. If the sequential decay and the Coulomb effects are small,
the dependence of the isobaric yield ratios on the binding energy difference should be ex-
ponential, i.e. of the form (ρn/ρp) exp(∆B/T ) where ρn and ρp are the neutron and proton
densities. The experimental data fluctuate around such a relationship. Extrapolation to
∆B = 0 using best fit lines (dashed and solid lines) allows one to obtain values for ρn/ρp

of 2.5 for the 112Sn+112Sn system (top line) and 5.5 for the 124Sn+124Sn system (bottom
line). Both of these numbers are larger than the initial N/Z values of the two system, 1.24
and 1.48 for 112Sn+112Sn and 124Sn+124Sn, respectively. The change in the N/Z values of
the two systems is about 20%. However the changes between any of the mirror nuclei ra-
tios are of the order of 200%, much larger than what one expects if the extracted neutrons
introduced into the neutron rich systems are homogenously distributed. This observation
suggests that the free neutron density needed to determine the light particle yields emitted
from multifragmentation is much enhanced in the neutron rich system.

To bypass the sequential decay problems completely and to avoid using only selected
ratios, an observable employing ratios of all measured isotope yields is used. This method
relies on extracting the relative neutron and proton density from two similar reactions, which
differ mainly in isospin. Adopting the approximation of a dilute gas in the Grand-Canonical
Ensemble limit with thermal and chemical equilibrium, the production of isotopes with
neutron number N and proton number Z are governed by the nucleon densities, ρn, ρp, the
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temperature T plus the individual binding energies of the various isotopes B(N,Z).

Y (N, Z) = F (N, Z, T )ρn.ρp. exp(B(N, Z)/T (9.1)

The factor F (N, Z, T ) includes information about the secondary decay from both particle
stable and particle unstable states to the final ground state yields as well as the volume
terms. (Some readers may notice the similarity of Eq.(9.1) to the Saha equation used to
describe the nucleation of a neutron and proton gas in astrophysics. In that case the prefactor
F(N,Z,T) is dominated by the entropy term.) If one constructs the ratio of Y (N, Z) from
two different related reactions, the observable called the relative isotope ratio, R21(N, Z) has
a simple dependence on the relative neutron density and proton density of the free nucleon
gas.

R12(N, Z) =
Y2(N, Z)

Y1(N, Z)
≈ (

ρn,2

ρn,1
)N(

ρp,2

ρp,1
)Z = ρ̂n

N ρ̂p
Z (9.2)

In the study of the central collisions of four Sn systems at incident energy of 50 MeV
per nucleon [30], the relative neutron and proton densities have been measured for the
112Sn+124Sn (N/Z=1.36), 124Sn+112Sn (N/Z=1.36), 124Sn+124Sn (N/Z=1.48)with respect to
the 112Sn+112Sn (N/Z=1.24) system. More than 20 isotope ratios are measured and they
follow the dependence of Eq.(9.2) very well [30,113].

The extracted ρ̂n and ρ̂p ratios are shown in Fig.15; ρ̂n increases while ρ̂p decreases with
the N/Z ratio of the total system. The increase of ρ̂n is consistent with neutron enrichment
in the gas phase while the decrease of ρ̂p suggests proton depletion, a consequence of n-
enrichment in the nucleon gas. The experimental trend (data points with the solid line drawn
to guide the eye) is much stronger than the trend expected if neutrons and protons were
homogeneously mixed (dashed lines) in the breakup configuration. Adopting an equilibrium
breakup model, results of Figs. 14 and 15 are consistent with isospin fractionation, a signal
predicted in the liquid-gas phase transition. However, as with other signatures for phase
transition observed so far, since the isospin fractionation is governed by the symmetry energy
of the neutron and proton, “isospin fractionation” is a more general characteristic of heavy-
ion reaction than the liquid-gas phase phenomenon. In fact, dynamical models also give
predictions of isospin amplication, in qualitative agreement with the data [114].
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Fig. 15: The mean relative free neutron and free proton density as a function of (N/Z)O.
The dashed lines are the expected n-enrichment and p-depletion with the increase of isospin
of the initial systems. The solid lines are drawn to guide the eye [30].
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X. A CLASS OF STATISTICAL MODELS

A class of statistical models has been very successful in explaining multifragmentation
processes in heavy-ion collisions. These models assume the following scenario. One defines a
freeze-out volume. At this volume an equilibrium statistical machanics calculation is done.
However, these statistical calculations do not start from a fundamental two-body interaction
or even a simplified schematic two-body interaction. Instead the inputs are the properties
of the composites (which appear as bound objects because of the fundamental two-body
interaction); their binding energies and the excited states. Their populations are solely
dictated by phase-space. This is very similar to chemical equilibrium between perfect gases
as, for example, discussed in [3]. The only interaction between composites is that they
can not overlap with each other in the configuration space. Coulomb interaction between
composites can be taken into account in different stages of approximation. These models
have the virtue that they can be used to calculate data for many experiments whether
these experiments relate to phase transition or not. The Copenhagen model, a statistical
multifragmentation model abbreviated SMM (also referred to as SMFM), has become, de

facto, the “shell-model” code for intermediate energy heavy ion data. An excellent review
of this model exists [102]. The Berlin Model, a microcanonical multifragmentation model,
usually abbreviated MMMC, has also been used to fit experimental data [115]. Some other
references for microcanonical simulation of similar physics are [116,117]. While there have
been tremendous improvements in techniques and details, the roots of such models for
heavy-ion collisions go back more than 20 years [118].

With some simplifications, the model of composites within the freeze-out volume at a
given temperature can be exactly solved. In order to distinguish this model from SMM and
MMMC (which are much harder to implement) we will coin a name. We will call this the
thermodynamic model. As phase transition aspects are easily studied in the model, we treat
this in detail.

XI. A THERMODYNAMIC MODEL

If there are A identical particles of only one kind in an enclosure, the partition function
of the system can be written as

QA =
1

A!
(ω)A (11.1)

Here ω is a one-particle partition function of the particle. For a spinless particle this is
ω = V

h3 (2πmT )3/2; m is the mass of the particle; V is the available volume within which
each particle moves; A! corrects for Gibb’s paradox. One might argue that this is not a
rigorous way of treating symmetry or antisymmetry of particles but a recent paper [119]
demonstrates that for nuclear disassembly this correction is very adequate. If there is only
one species, eq.(11.1) is trivially calculated.

If there are many species, the generalisation is

QA =
∑

Πi
(ωi)

ni

ni!
(11.2)
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Here ωi is the partition function of a composite which has i nucleons. We are at the moment
ignoring the distinction between a neutron and a proton and thus our composites are bound
states of i nucleons. For a dimer, i = 2, for a trimer, i = 3 etc. In a more realistic version
we will introduce the distinction between neutrons and protons but this model of one type
of nucleon is highly illustrative, so we will continue with this for a while.

Eq.(11.2) is no longer trivial to calculate. The trouble is with the sum in the right
hand side of eq.(11.2). The sum is restrictive. We need to consider only those partitions of
the number A which satisfy A =

∑

ini This restriction is hard to implement in an actual
calculation and already for A of the order of 100, the number of partitions which satisfies
the sum is enormous. We can call a given allowed partition a channel. The probablity of
the occurrence of a given channel (n1, n2, n3.....) is

P (~n) ≡ P (n1, n2, n3........)

P (~n) =
1

QA
Π

(ωi)
ni

ni!
(11.3)

The average number of composite of i nucleons is easily seen from Eq.(11.3) to be

< ni >= ωi
QA−i

QA
(11.4)

Since
∑

ini = A one readily arrives at a recursion relation [120]

QA =
1

A

k=A
∑

k=1

kωkQA−k (11.5)

For one kind of particle, QA above is easily evaluated on a computer for A as large as 3000
in matter of seconds. Thus in this model we can explore the thermodynamic limits. It is
this recursion relation that makes computation so easy in the model. In the realistic model
with two kinds of particles which we will introduce later, systems as large as 400 particles
are easily done. It is important to realise that millions of channels possible in the partitions
(Eq.(11.3)) are exactly taken into account, although numerically. No Monte-Carlo sampling
of the channels is required.

We now need an expression for ωk which can mimic the nuclear physics situation. We
take

ωk =
V

h3
(2πmT )3/2k3/2 × qk (11.6)

where the first part arises from the centre of mass motion of the composite which has k
nucleons and qk is the internal partition function. For k = 1, qk = 1 and for k ≥ 2 it is taken
to be

qk = exp[(W0k − σ(T )k2/3 + T 2k/ǫ0)/T ] (11.7)

Here, as in [102], W0=16 MeV is the volume energy term, σ(T ) is a temperature dependent
surface tension term and the last term arises from summing over excited states of the compos-
ite in the Fermi-gas model. For high temperatures, this will overestimate the contribution of
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the excited states and a modified expression is sometimes used to correct for this [116]. The
explicit expression for σ(T ) used here is σ(T ) = σ0[(T

2
c −T 2)/(T 2

c +T 2)]5/4 with σ0= 18 MeV
and Tc=18 MeV. The value of ǫ0 is taken to be 16 MeV. The energy carried by one compos-
ite is given by Ek = T 2∂lnωk/∂T = 3

2
T + k(−W0 + T 2/ǫ0) + σ(T )k2/3 − T [∂σ(T )/∂T ]k2/3.

Of these, the first term comes from cm motion and the rest from qk. In [121], the term
T [∂σ(T )/∂T ]k2/3 was neglected. It is included here but makes little difference. In the nu-
clear case one might be tempted to interpret the V of Eq.(11.6) as simply the freeze-out
volume but it is clearly less than that; V is the volume available to the particles for the
centre of mass motion. In the Van der Waals spirit we take V = Vfreeze − Vex where Vex is
taken here to be constant and equal to V0 = A/ρ0 [122]. The precise value of Vex is incon-
sequential so long it is taken to be constant. Calculations employ V ; the value of Vex enters
only if results are plotted against ρ/ρ0 = V0/(V +Vex) where ρ is the freeze-out density. The
energy of the system is E =

∑

< nk > Ek; the pressure is p = T∂lnQA/∂V = T 1
V

∑

< ni >.
These can be deduced from Eqs.(11.2) and (11.4).

The surface tension term is crucial for phase transition in this model. At a given tem-
perature the free energy F = E − TS has to be minimised. It costs in the energy term
E to break up a system. A nucleus of A nucleons has less surface than the total surface
of two nuclei each of A/2 nucleons (the volume energy term has no preference between the
two alternatives). Therefore at low temperature one will see a large chunk. The −TS term
favours break up into smaller objects. The competition between these two effects leads to
the following features seen in experiments. At low temperature (low beam energy) each
event will have one large composite (the fission channel is not included in these models)
and few small composites. This leads to the inclusive cross-section being U-shaped (Fig.16).
(For illustration, starting from this figure and and upto and including Fig.20, all calulations
employ V of Eq.(11.6) =1.5V0). As the temperature increases, the peak on the large a side
begins to decrease, finally disappearing entirely. When this happens, one has crossed from
the coexistence zone to the gas phase. A graph of the yield Y (a) against a is shown in
Fig.16. At temperature 6.2 MeV one sees both a large residue and smaller clusters, at 6.7
MeV the large cluster just disappears and at 7.2 MeV one has only the gas phase.
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Fig.16. In a model of one kind of nucleon, the yield Y (a) against a where the disintegrat-
ing system has 200 nucleons. At temperature 6.2 MeV one has coexistence: on the average,
there is a large blob and also lighter mass composites. At 6.7 MeV, the maximum in the
yield Y (a) on the high mass side just disappears.. This is also the temperature at which the
specific heat Cv per particle maximises (see Fig.17). We call this the boiling temperature.
At higher temperature, the yield Y (a) falls monotonically.

It is instructive to plot for the same nucleus the specific heat per nucleon labelled by Cv,
the total multiplicity and NIMF , the number of intermediate mass fragments as a function
of temperature (Fig.17). One sees the specific heat maximising at the same temperature
as the one at which, in Fig.16, the peak in the high a side of the yield function Y (a) just
disappears. One should remember that fragments produced in this model appear at non-zero
temperature. They will further decay by sequential emissions. Thus the total multiplicity
plotted here is lower than actual value to be expected finally. After the sequential decays,
the yields of very light elements such as monomers, dimers etc. will increase substantially
as the heavy composites decay by emitting these. In NIMF in Fig.17 we have included a=6
to 40. With sequential decays included NIMF will go down from the values shown in Fig.17.
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Fig.17. For the same model of 200 nucleons of one kind, the total multiplicity, NIMF (the
number of intermediate mass fragments defined here as having a between 6 and 40) and the
specific heat Cv per particle as a function of temperature. Note that the maximum of the
specific heat coincides with the quick rise in NIMF and the disappearence of the maximum
in the yield Y (a) on the high a side.

Keeping these reservations in mind we see in Fig.17 that the sudden increase of the
multiplicity and NIMF imply coexistence. At higher temperature, the system is in the gas
phase. The cross-section for a large residue is very small (Fig.16). In order to understand
the nature of the phase transition we now go to much larger systems so that one can feel
confident about extrapolation to the thermodynamic limit. With this in mind we have
plotted in Fig.18., for a system of 1400 and 2800 particles, the free energy per particle as a
function of temperature (The free energy is simply -T lnQA). A brake appears to develop in
the first derivative of F/A which signifies first order phase transition.
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Fig.18. The first derivative of the free energy per particle (−T lnQA/A) will show a
break as a function of temperature for a large system. Shown here are cases of 1400 and
2800 particles.

We follow this up in Fig.19 by calculations of specific heat Cv per particle for 200, 1400
and 2800 particles. As the number of particles increases, the maximum in the Cv per particle
becomes sharper and the height increases. In Fig.20 we have tried to understand the origin
of this singularity in greater detail. Let us denote by < amax > the ensemble average of the
mass number of the heaviest composite (the technique for this calculation is given in [121]).
This should scale like A where A is the number of particles in the disintegrating system. In
Fig.20 we have plotted < amax > /A as a function of T/Tb where Tb is the temperature at
which the specific heat maximises. As A becomes large, the drop in the value of < amax > /A
at T = Tb becomes sharp. The sudden disappearence of this large blob of size ≈ A/2 causes
this behaviour of Cv.
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Fig.19. As the number of particles increase, the maximum in Cv per particle becomes
very narrow and very high.

Fig.20. For large systems a large blob of matter suddenly disappears at Tb.

In Fig.21 we have drawn a p − ρ diagram for a system of 200 particles at various tem-
peratures. We have also drawn a line that is labelled co-existence which passes through the
points where the specific heat attains the highest values. For plotting this graph we have
used Vex = 200/ρ0. We stop below ρ/ρ0=0.50. At higher density the approximation of non-
interacting clusters (even after including Van der Waals type correction for finite volumes

40



of the composites) would be very questionable.

Fig.21. Isotherms for different temperatures for a system of 200 nucleons. Here it is
assumed that Vex = 200/ρ0. Line labelled coexistence goes through points of highest Cv.

One approximation in the above calculation is the assumption of constant excluded
volume. The excluded volume (as can be verified in Monte-Carlo simulation) is a function
of the total multiplicity . It is also a function of the freeze-out volume inside which the
particles are constrained to move. For 200 particles, the effect of this variability of the
excluded volume on the p−V diagram was investigated in [123]. The difference is not large.
However, this has not been studied in the thermodynamic limit. It will be very interesting
to investigate what effect it will have on the nature of the phase transition in the very large
A limit.

The thermodynamic properties of this model have been further studied in [124,125].

XII. GENERALISATION TO A MORE REALISTIC MODEL

For comparisons with actual data the model must be made more realistic. Towards that
goal, a composite is now labelled by two indices: ω → ωi,j where the the first index in the
subscript refers to the number of protons and the second, to the number of neutrons in the
composite. The partition function for a system with Z protons and N neutrons is given by

QZ,N =
∑

Πi,j

ω
ni,j

i,j

ni,j!
(12.1)
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There are two constraints: Z =
∑

i × ni,j and N =
∑

j × ni,j. These lead to two recursion
relations any one of which can be used. For example,

QZ,N =
1

z

∑

i,j

iωi,jQZ−i,N−j (12.2)

where

ωi,j =
V

h3
(2πmT )3/2(i + j)3/2 × qi,j (12.3)

Here qi,j is the internal partition function. These could be taken from experimental binding
energies, excited states and some model for the continuum or from the liquid drop model
or a combination of both. The versatility of the model lies in being able to accommodate
any choices for qi,j. A choice of qi,j from a combination of the liquid-drop model for binding
energies and the Fermi-gas model for excited states that has been used is

qi,j = exp[(W0(i + j) − σ(i + j)2/3 − κ
i2

(i + j)1/3
− s

(i − j)2

i + j
+ T 2(i + j)/ǫ0)/T ] (12.4)

where W0=15.8 MeV, σ=18.0 MeV, κ=0.72 MeV and ǫ0= 16 MeV. One can recognise in
the parametrisation above the volume term, the surface tension term, the Coulomb energy
term, the symmetry energy term and contributions from excited states.

The coulomb interaction is long range; some effects of the Coulomb interaction between
different composites can be included in an approximation called the Wigner-Seitz approxi-
mation. We assume, as usual, that the break up into different composites occurs at a radius
Rc which is greater than normal radius R0. Considering this as a process in which a uniform
dilute charge distribution within radius Rc collapses successively into denser blobs of proper
radius Ri,j we write the Coulomb energy [126] as

EC =
3

5

Z2e2

Rc

+
∑

i,j

3

5

i2e2

Ri,j

(1 − R0/Rc) (12.5)

It is seen that the expression is exact in two extreme limits: very large freeze-out volume
(Rc → ∞) or if the freeze-out volume is the normal nuclear volume so that one has just one
nucleus with the proper radius.

For the thermodynamic model that we have been pursuing, the constant term 3
5

Z2e2

Rc

in the above equation is of no significance since the freeze-out volume is assumed to be
constant. In a mean-field sense then one would just replace the Coulomb term in Eq.(12.4)
by κ i2

(i+j)1/3
(1.0 − (ρ/ρ0)

1/3)

Calculations with the thermodynamic model with two kinds of particles and realistic qi,j

were done in [127,128]. A plateau in the caloric curve is found around 5 MeV which is in
accordance with experimental finding. An interesting point in the calculation is the following
observation. Without the Coulomb, the height in the peak of the specific heat increases with
A (see previous section). With Coulomb the height is reduced and the dependence on A
nearly disappears. The growth in size is compensated by the growth in Coulomb repulsion.
This means the caloric curve is approximately universal,i.e., does not depend strongly on
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the specific system which is disintegrating. We show the caloric curves computed for three
disintegrating systems in Fig.22. This is taken from [127].

Fig.22. The caloric curve for three different nuclei. The Coulomb interaction is included
in the Wigner-Seitz approximation.

Of course, the model can also be used to calculate other observables, not necessarily
related with any phase transition aspect. However, for many purposes an “afterburner”
calculation is required. The composites obtained in the calculations are “hot”. They will
subsequently decay by particle emissions. In [129] these subsequent decays were included in
an approximate manner so that one can compare with experimental yields of boron, carbon
and nitrogen isotopes. This comparison is shown in Fig.23.
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Fig.23. Neutron number (N), proton number (Z) vs. counts for the three cases of boron,
carbon and nitrogen. The experimental data are from [130] S+Ag at 22.3A MeV. The open
squares are the experimental data. The dotted line with the triangle plotting symbol is the
thermodynamic model calculation as described in the text. A temperature of 5 MeV is used.
The other curves are obtained by allowing sequential decays of hot nuclei. The calculation
stops after four possible decays (the solid line) as virtually no changes are seen between
triple and quadruple decays.

XIII. A BRIEF REVIEW OF THE SMM MODEL

A very comprehensive review of this model exists [102] so we only give a brief resumé
here. It is relevant to mention that a peak in the specific heat at about 5 MeV temperature
was predicted in the model well before experiments were done [131].
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In the SMM each break-up channel is treated separately. A given channel is specified
by the set of ni,j’s, V and temperature T . The volume V which is the free volume available
for the motion of the cms of the composites is taken to be V = χV0 = χA/ρ0 where χ is
multiplicity dependent (M =

∑

ni,j).

χ = (1 +
d

r0A1/3
(M1/3 − 1))3 − 1 (13.1)

In the above d is taken to be 1.4 fm; r0A
1/3 is the normal radius of a nucleus of A nucleons.

The concept of temperature is used but its primary use is to make the energy in each
channel the same value and to correspond to the experimental situation. It is therefore a
microcanonical calculation in spirit. The energy in a given channel Etot is given by

Etot(T, V ) = Etr(T ) +
∑

Ei,j(T )ni,j + Ecou(V ) (13.2)

where Etr(T ) = 3
2
(M − 1)T , Ei,j(T ) gives the intrinsic energies at temperature T (includes

binding energies, contribution from excited states etc.; see the discussion in section XII) and
Ecou(V ) completes the Wigner-Seitz estimation of Coulomb energy. The crucial thing here
is the choice of channels. It is impossible to include all channels. For A=200 the number of
possible multifragment partitions is 3.9×1012 so a Monte-Carlo sampling which is geared to
include the most important channels at a given excitation energy is needed. This is a very
elaborate story in itself and all we can do here is to provide references. An important paper
which elaborates on the procedure is [132]. The review article on the model [102] gives a
more complete list of references. As in all models of this type, sequential decays of the hot
fragments need to be included to compare with most experimental data. The fit with data
on IMF multiplicity, mean energy etc. is normally quite good.

XIV. THE MICROCANONICAL APPROACH

Pioneers of this approach were the Berlin group [133] and Randrup and collaborators
[116]. In the Berlin approach, the clusters, which have finite sizes, are all totally inside
the freeze-out volume. This freeze-out volume is the same for all channels. Randrup et
al. demand that centres of all the clusters should be within the freeze-out volume. There
are other practical differences between the two formulations. Let us sketch the general
procedures that any microcanonical calculation will have to accomplish. Suppose that we
are interested only in calculating the average number of clusters of a composite which has
k protons and l neutrons, i.e., < nk,l >, when the total energy is E and the disintegrating
system has Z protons and N neutrons. How do we proceed? For simplicity we will say that
the only interaction between the clusters is that they can not overlap. We will also assume
that the composites have only ground state.

There are many possible break-up channels. All divisions (that satisfy
∑

ini,j = Z and
∑

jni,j = N where ni,j is the number of cluster which has i protons and j neutrons) are
allowed and equally likely to occur. The phase space available to each channel, however, will
be, in general, different and will strongly affect the final result. The phase space associated
with each break-up channel is
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Ω[ni,j ] =
1

h3M
Πp,q

1

np,q!

∫

Πd3ri,jd
3pi,jδ[E +

∑

Bi,j −
∑

p2
i,j/2mi,j −

∑

v(i, j : m, n)] (14.1)

Here M is the multiplicity in the channel [ni,j ], Bi,j the binding energy of the cluster (i, j)
and v(i, j : m, n) is the potential energy between the clusters (i, j) and (m, n). In our case
it is either 0 (when they are separated) or ∞ (when they overlap). The momentum integral
is analytic:

∫

d3p1....d
3pfδ[K −

f
∑

1

p2
i

2mi
] =

2π

Γ(3f/2)
(m1....mf )

3/2(2πK)3f/2−1 (14.2)

Once the momentum integral is done we still need to do the configuration space integral.
This is by no means trivial but one can estimate it in a Monte-Carlo procedure. The first
particle is placed at a random position inside the freeze-out volume. Having placed the first
one we try to place the second one, again at a random position in the freeze-out volume.
We may succeed but we may fail also if, by chance, the second chosen position was such
that the new particle overlaps with the particle already in. A successful run occurs if we are
able to put M particles in without failing once. An unsuccessful run happens if anytime in
the chain we failed to put a particle. Then the volume integral is (Vfreeze−out)

M × Ns

Nun+Ns

where Ns is the number of successful runs and Nun is the number of unsuccessful runs. The
quantity just calculated is V M where V is the volume of the thermodynamic model.

Provided all this is done for each channel and we have calculated the phase space Ω[ni,j ]
for each channel, the average number of particles of a composite with k protons and l
neutrons will be given by

∑

nk,lΩ[ni,j ]/
∑

Ω[ni,j ] where nk,l is the number of composites
with proton number k, neutron number l in the channel labelled by [ni,j ] and Ω[ni,j ] is the
phase space integral associated with this channel. The sum is over all [ni,j ].

In practice, this procedure is impossible to carry out as the number of channels is in-
ordinately large. An “importance sampling” [134] of the phase space is necessary. This is
usually done with the Metropolis method [134,135]. We will have occasion to use this tech-
nique later also. One attempts elementary moves by which one migrates from one channel
(here with multiplicity M) to a neighbouring channel (multiplicity M + 1 or M − 1). These
moves are “fission” (take a composite and arbitrarily break it into two pieces) and “fusion”
(join two composites). Let us call Ω the phase space integral before the move. One also
calculates the phase space integral after the attempted move. Let us call this Ω′. If Ω′ > Ω
the move is accepted. If Ω′ < Ω, the probability of switching is given by the ratio Ω′/Ω
(see [134] why these give the correct transition probabilities). An event is accepted every N
attempted moves (some successful and some not) and averages will be calculated with many
such events; N should be sufficiently large to avoid event-to-event correlation and of course
one should have sufficient number of events to reduce statistical errors.

There are a great many details which need to be worked out before such a program can
be instituted for practical calculations. The interested reader should consult the original
literature. The techniques for microcanonical calculations were developed in the mid eighties
spanning several papers, each one an improvement over the previous one. What we have
outlined here are the general principles.
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XV. THE PERCOLATION MODEL

This model is strikingly different from the models described above. The model has been
extensively studied in condensed matter physics. A delightful monograph exists [96] which
has all the material needed to follow the application in nuclear physics. The applications in
nuclear physics were made by Campi and collaborators [92,94] and by Bauer and collabora-
tors [93,95].

There are two types of percolation models: site percolation and bond percolation. For
applications to nuclear physics, bond percolation was used. In bond percolation there are N
lattice sites. One uses a three-dimensional cubic lattice, thus N = 53, 63 etc. The number of
nucleons is also N . Each lattice site contains one nucleon. We do not distinguish between
neutrons and protons. The crucial parameter is the bonding probability p whose value can
vary between 0 and 1. The probability that two nearest neighbour nucleons will be part of
a cluster is given by the value of p. If p=0 (high excitation energy) all N3 nucleons will
emerge as singles. If p=1, the nucleons stay together as one nucleus (low excitation energy,
not enough to break up the nucleus). For the values of p between the two extremes Monte-
Carlo sampling is needed to generate events and determine in each event the occurrence
of clusters of different sizes. There is a phase transition in this model. One can define a
percolating cluster; this is a cluster, which, if it exists, spans the walls, i.e., connects opposite
walls through an unbroken cluster. For N very large, this appears at the value of p = 0.2488.
This value of p will be labelled by pc. The order parameter in this model is the probability
that an arbitrary site (equivalently an arbitrary nucleon) is part of this percolating cluster.
Below pc, this is zero since there is no percolating cluster. It starts from zero at pc and
continuously moves towards the value 1 as the value of p is increased. The phase transition
in this model is continuous and not a first-order phase transition. This aspect had a very
important and strong influence in the history of search for phase transition in heavy-ion
collisions. Near critical points, One can define critical exponents and try to evaluate them
from experiment. We will see later that even though we now regard the phase transition
in nuclear heavy ion collisions to be first order, it is meaningful to try to measure certain
exponents. In the lattice gas model (to be described below) these retain significance even
when one is far from a critical point and is in the vicinity of a first-order phase transition.

We give the values of the more common exponents in the thermodynamic limit (i.e.,
N → ∞). One of these exponents we have already encountered many times. Near the
critical point the yield of mass a is given by

Y (a, p) = a−τf [(p − pc)a
σ] (15.1)

At the critical point the yield is a power law. The value of τ in the percolation model is
2.18. The value of σ in the above equation is 0.45. Let us denote the mass of the largest
cluster by amax. The second moment is defined by

S2 =
∑

′a2Y (a)/A (15.2)

Here the summation excludes the amax and A = N3 is the number of nucleons. The second
moment S2 diverges: S2 ∝ |p − pc|−γ where the value of γ is 1.80. In finite systems S2 will
not become infinite but will go through a maximum as pc is traversed. Above the percolation
point the order parameter is given by amax/A ∝ |p − pc|β where β = 0.18.
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In spite of its simplicity, the percolation model was an aid in understanding various
phenomena. It has now been replaced by a lattice gas model which is more realistic, more
versatile and indeed contains the percolation model as a special case.

XVI. THE LATTICE GAS MODEL (LGM)

The advantage of the percolation model is that clusters are easily obtained. This break-
up can be compared with experiment. But there is no equation of state in the usual sense.
The equation of state requires two variables: p and V , then T is automatically known
from the EOS: or p and T then the EOS gives V etc. There is only one parameter in the
percolation model, the bond probability. There is no obvious way this model can be linked
to finite temperature Hartree-Fock theory or the thermodynamic model or SMM or the
microcanonical model. There is no Hamiltonian.

In [88,89] LGM was introduced so that one has an EOS as in Hartree-Fock theory but
also has the capability of predicting clusters as in the percolation model. The EOS of LGM
in mean-field theory in a grand canonical ensemble is done in textbooks [13]. To obtain
clusters in the model an extension of the wellknown model is necessary. Although LGM
today is more complete with the inclusion of isospin dependence and Coulomb interaction,
we introduce first the simplest version. This will be very easily generalised later.

As in percolation, we have Ns lattice sites but now, in general, Ns is greater than A,
the number of nucleons that need to be put in these sites. When Ns = A the nucleus has
normal density. We are not allowed to put more than one nucleon on a site. Thus the model
is limited to normal volume or larger. Because cluster formation presumably takes place in
a volume significantly larger than normal volume, this restriction is not debilitating. The
nearest neighbours have a bond ǫ which is negative. Only nearest neighbours interact. The
exclusion of the possibility of two nucleons occupying the same site mimics a short range
repulsion. The attractive nearest neighbour interaction simulates the attractive interaction
which is also short range (but longer than the short range repulsive interaction).

Let Nnn be the number of nn bonds in a specific lattice configuration. The energy carried
by these bonds is ǫNnn. Thus the partition function is

Q =
∑

Nnn

g(Ns, A, Nnn)e−βǫNnn (16.1)

Here g(Ns, A, Nnn) is the number of configurations which have Nnn nearest neighbour bonds
and which can be formed from A nucleons in Ns lattice sites. This is not analytically
solvable. Hence calculation of observables where configurations have the above weighting
requires Monte-Carlo simulations.

The simulations are usually done in the Metropolis algorithm. Starting from an initial
configuration chosen suitably [109], one attempts a switch between an unoccupied site and
an occupied site. If the resulting change of energy ∆E is negative, the switch is accepted.
If ∆E is positive, it is accepted with a probability e−∆E/T . After a large number N of
attempted switches (some successful and some unsuccessful) an event is accepted. N should
be large enough to avoid event to event correlation.

The grand canonical ensemble of the LGM (sum over all possible A’s) can be mapped
onto a three dimensional Ising model [13,136]. The latter has been extensively studied and
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indeed serves as a model for liquid-gas phase transition. Many of the known results of the
Ising model can be directly applied. For example in the large A limit the critical temperature
will be 1.1275ǫ and the critical density ρ/ρ0 = A/Ns = 0.5.

We consider now an extension of the model so that clusters can be computed. Suppose
we have generated a configuration. At finite temperature, the nucleons will not be frozen at
the lattice sites. They will have momenta. In this configuration each of the A nucleons can
be given a momentum by Monte-Carlo sampling of a Maxwell-Boltzmann distribution at the
given temperature. Thus in an event we have nucleons at definite lattice sites with definite
momenta. There may be some isolated nucleons which have no nearest neighbours. These
clearly are monomers. The next case is when there is a cluster of two nucleons which are
nearest neighbours of each other. They will form a bound cluster of two if the kinetic energy
of relative motion is insufficient to overcome the attraction between the two nucleons, i.e.,
p2

r(1, 2)/2µ + ǫ < 0. Here ~pr(1, 2) = 1
2
(~p1 − ~p2) and µ = m/2(m=mass of one nucleon).

It turns out that this prescription which is rigorously correct for a cluster of two also
works statistically for larger clusters. That is, we can formulate a rule that independent
of other neighbours, two nearest neighbours form part of the same cluster if the relative
kinetic energy of the two is insufficient to overcome their attraction. It is obvious that this
recipe, introduced in [88,89], reduces the many body problem of recognising a cluster of
many nucleons into a sum of independent two body problems. For brevity we refer to this
as PD recipe. To see why this works statistically even if not individually let us specifically
consider a three body cluster [109].

For three particle clusters, nearest neighbours are either linear or L shaped. In either
case there is only one particle which has two bonds (label this by particle 2) and two others
(label them 1 and 3) which have one bond each. According to the PD recipe this will form a
three body cluster if p2

r(1, 2)/2µ+ǫ < 0 and p2
r(2, 3)/2µ+ǫ < 0. To check if particle 3 is part

of a three body cluster (similar arguments will be needed for particles 1 and 2) we should
instead verify if p2

r(12, 3)/2µ̃ + ǫ < 0. Here ~pr(12, 3) is the relative momentum between the
centre of mass of (1+2) and 3; µ̃ = (2/3)m is the reduced mass for this relative motion.
Thus there may be cases where the PD recipe gives a three body cluster wheras in reality
the third one will separate. But there will also be cases where the PD recipe will deem that
the third one will separate whereas in reality it stays attached. Statistically overestimation
will cancel out underestimation because for a Maxwell-Boltzmann distribution all relative
motions are also Maxwellian at the same temperature. That is, in Monte-Carlo simulation,
p2

r(12, 3)/2µ̃ will be as many times below the value −ǫ as p2
r(2, 3)/2µ will be.

The same argument applies to particle 1. For particle 2. it can be verified that if
p2

r(1, 2)/2µ + ǫ < 0 and p2
r(2, 3)/2µ + ǫ < 0 then p2

r(13, 2)/2µ̃ + 2ǫ < 0 is always satisfied.
Campi and Krivine have used a different approach and come to the conclusion [137] that

the PD recipe gives the correct number of particle stable clusters.
Recognition of clusters in a many body system is a complicated issue. The PD recipe

was tested in [138] in numerical simulations and found reliable. In the PD recipe once
the configuration of A nucleons and their momenta are given, the cluster decomposition
is immediate. One may however, starting from this initial condition, switch to a different
model. One may propagate particles using molecular dynamics. At asymptotic times clusters
are easily identified as different clusters will separate from each other. Of course the result
will depend upon the interaction potential used for molecular dynamics propagation. To test
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the PD recipe one must use an interaction consistent with the assumptions of the lattice
gas model. Let a be the length of each side of the elementary cubic lattice. The interaction
between particles must become repulsive when the distance between them gets to be less
than a. At distance

√
2a it is deepest at -5.33 MeV. At distance beyond it must go to zero

rapidly. Given the same initialisation and such interaction, molecular dynamics produced
very similar results as the PD recipe.

It follows that with this recipe of calculating composites, we do not need to worry about
subsequent evaporation as one needs to in many other models; thermodynamic, SMM and
microcanonical. This is a tremendous advantage. Evaporation was already taken into ac-
count when we applied the PD recipe. One does not take the size of the cluster to be given
by just the number of nucleons which are connected to each other through the nearest inter-
action [139]. Some of these will fly away. The rest that remain and are counted, are particle
stable.

With a prescription for obtaining clusters, the LGM will show many features in common
with the percolation model. This leads to interesting properties.

XVII. PHASE TRANSITION IN LGM

Whether one later ascribes momenta to nucleons and calculates clusters or not, there
is phase transition in the traditional LGM. The thermodynamics of the system does not
depend upon the definition of clusters. The coexistence curve can be drawn. This diagram
is simply transferable from studies in the three dimensional Ising model. We show this in
Fig.24. The thermal critical point is shown in the diagram as C.P.

Fig.24. Phase diagram of the three dimensional lattice gas model. The full line is
the coexistence curve. Percolation sets in along the dotted line and continues along the
coexistence line to the left of C.P.

With a rule for calculating clusters it will be very interesting if the thermal critical point
also coincides with the onset of a percolating cluster. This aspect was studied by Coniglio
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and Klein [140]. They propose that the probability that two nearest bonds have an active
bond between them be given by

p = 1 − exp(−β|ǫ|/2) (17.1)

With this definition, these authors, using renormalisation group techniques, proved that at
(ρc, Tc) percolation just sets in. However, percolation sets in not just at the thermodynamic
critical point but rather along a continuous line in the (ρ, T ) plane (the dotted line in Fig.24).
This was studied in [141] and the line is called Kertész line. Thus the critical exponents τ, β
and γ are meaningful not only at the critical point but along an entire line.

It turns out the PD recipe which is a natural choice for calculation of clusters in the
case of nuclear disintegration is very close to the Coniglio-Klein (CK) formulation. The PD
formula for p (using the fact that in a Maxwell-Boltzmann distribution the relative motion
is also Maxwell-Boltzmann) is

p = 1 − 4π

(2πµT )3/2

∫ ∞

√
2µ|ǫ|

exp(−p2
r/2µT )p2

rdpr = 1 − 2√
π

∫ ∞

|ǫ|/T
e−qq1/2dq

A comparison of p according to the above formula to the Coniglio-Klein formula is shown
in Fig.25. They are very close. As far as we know, all cluster calculations in nuclear physics
use the PD recipe.

With the aid of Fig.24 we can now discuss phase transition in nuclear disintegration
according to LGM. The freeze-out volume that fits the data best [89] is bigger than twice
the normal nuclear volume. In that case as the temperature of the disintegrating system is
raised from a low value to a high value (either by changing the beam energy or by gating
on appropriate impact parameter) the system will cross the coexistence curve on the low
density side of the critical point (to the left of C.P. in Fig.24). Thus we will have first-order
phase transition [142]. As the line is crossed one will see a discontinuity in specific heat, a
peak in S2 and other features.

Fig.25. The bond probability p is plotted as a function of temperature. The solid line
(pck) is the Coniglio-Klein formula, the dotted line (ppd) is the PD recipe.
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XVIII. ISOSPIN DEPENDENT LGM INCLUDING COULOMB INTERACTION

For many practical applications, it becomes necessary to distinguish between like particle
interactions (bond between proton and proton or/and between neutron and neutron) and
unlike particle interaction (bond between neutron and proton); ǫ between like particles must
be repulsive or zero otherwise we can obtain dineutron or diproton bound states. The bond
between unlike particles will be attractive. At zero temperature in nuclear matter, energy
considerations imply that sites will be alternately populated by neutrons and protons. Thus
the only nearest neighbour interactions will be those between unlike particles. Nuclear
matter binding energy then dictates that ǫnp = −5.33MeV. This however does not fix the
value of ǫpp or ǫnn.

It is clear that the Monte-Carlo technique of generating events for finite nuclear systems
can also be used when the interactions between like and unlike particles are different. The
Coulomb interaction between protons can also be included. When this is done at zero
temperature we obtain the ground state energies. This was done in [109] for a range of
nuclei for ǫpp = ǫnn = 0. The binding energies of these nuclei thus computed were then
fitted to a simple liquid-drop mass formula:

E/A = −av(1 − κI2) + as(1 − κI2)A−1/3 + ac
Z2

A4/3
(18.1)

Here I = (N−Z)/A is the neutron-proton asymmetry of the nucleus. The fit of LGM binding
energies to this four parameter formula is quite good. We compare the four parameters
deduced from LGM to liquid-drop model values [143] in the table. Considering the simplicity
of the model, the agreement is gratifying. We also notice that the asymmetry parameter κ
is larger than the liquid-drop value. Since ǫnp is fixed from nuclear matter binding energy,
the only way we can bring down κ is to make ǫpp and ǫnn go negative. As explained already
this is not permissible. We are therefore led to the conclusion that ǫnp = −5.33MeV and
ǫpp = ǫnn = 0 are the best choices for isospin dependent LGM.

Table I. Lattice gas and phenomenological liquid-drop model parameters.
——————————————————————————-

Model av as κ ac

LGM 16.0 16.03 2.14 0.746
Phenomenological 15.68 18.56 1.79 0.717
——————————————————————————-

XIX. CALCULATIONS WITH ISOSPIN DEPENDENT LGM

We mentioned earlier that the isotopic content of the gas phase can be different from that
of the liquid phase. This comes out nicely in LGM. Fig.26, taken from [109] demonstrates
this. Here one considers breakup of 197Au at different temperatures. The average value of the
charge of the largest residue at each temperature is denoted by < Zmax >. This will drop in
value as the temperature is increased. Also calculated is the average value of neutron content
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< Nmax > of the largest cluster. We may regard the largest cluster as the liquid phase and
the rest of the nucleons as primarily belonging to the gas phase. The disintegrating system
has N/Z = 1.49. With an isospin dependent LGM, the < Nmax > / < Zmax > is much
closer to 1. This means the gas phase has a higher N/Z ratio, higher than that of the
parent system. The reason for this behaviour is that the symmetry energy drives the N/Z
ratio of the largest cluster towards the value unity. The Coulomb effect will offset this as
shown in the figure. The simplest version of the LGM which had no isospin dependence
and no Coulomb term will keep the < Nmax > / < Zmax > at the value pertaining to the
disintegrating system. This is also shown in the figure. This contradicts experiment.

Fig.26 The ratio < Nmax > / < Zmax > as < Zmax > changes (because temperature
changes). The temperature increases by 0.5 MeV between two successive symbols as we
move from right to left starting with 2.5 MeV.

For 197Au we show several quantities as a function of temperature. In experiments one
extracts the quantity τ where the yield Y (Z) as a function of Z is fitted to Y (Z) ∝ Z−τ . The
power law comes out quite well in LGM. We notice that the maximum in Cv, the maximum
in S2 and the minimum in τ all bunch around T=4.2 MeV which we then associate with the
crossing of the coexistence curve. The maximum in NIMF is at a slightly higher temperature.

53



Fig.27 The specific heat Cv, the exponent τ for the power law fit to the yields of isotopes,
the second moment S2 and the IMF yield are shown as a function of temperature for 197Au.
The calculations are done in an 83 lattice.

The EOS for isospin dependent LGM in mean-field theory using the Bragg-Williams and
the Bethe-Peierls approximation can be found in [144]. Phase transition aspects, much more
than what we have covered here, can be found in [108,145–147]. The model has been used
successfully to obtain several experimental results, for example, t/3He ratios as the isotopic
content of the parent system changes [108,109]. Some applications were made in [110]. The
shortcomings of the model for detailed fittings to experimental data are obvious. The model
has cubical symmetry rather than spherical symmetry. The shell effects are missing although
the smooth part of binding energy is approximately reproduced. The excitation spectrum of
the composites is incorrect. But it has many nice features not present in other models. Here
composites are formed directly out of fluctuations. One starts with interactions between
two nucleons. The inclusion of Coulomb effects is precise, though numerical. Best of all, it
includes interactions between composites.

XX. FRAGMENT YIELDS FROM A MODEL OF NUCLEATION

A phenomenological droplet model based on homogeneous nucleation theory has also
been used to describe mass yields provided in heavy-ion collisions [148]. The nucleation
model is an extension of the Fisher droplet model which was originally used to describe such
yields. The extension allows for the possibility that supersaturated systems are produced
during the brief encounter of two colliding nuclei. Homogeneous nucleation occurs in super-
saturated systems when chance collisions of particles in the gas phase yield to local density
inhomogeneties. These inhomogenities are droplets of particles of the liquid phase that will
grow in size if the systems lived for a long time. Specifically, in the supersaturated phase, a
critical size droplet exists which is determined by the surface tension and the difference of
liquid and gas chemical potentials. Droplets larger than the critical size will grow by accu-
mulating nucleons in order to lower the free energy of the system while droplets of smaller
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size will evaporate nucleons also lowering the free energy of the system. This behaviour
in growth and evaporation reflects itself in a yield distribution which is U-shaped with an
initial decrease with A until the critical size Ac is reached and then an increase in yield with
A above Ac. In this nucleation description, the probability of formation of droplets is deter-
mined by calculating the change in Gibbs free energy with and without a drop at constant
temperature and pressure. For example, if a droplet of size A is surrounded by B droplets
of the gas phase, then Gwithdrop = µlA+µgB +4πR2σ(T )+TτlnA and Gnodrop = µg(A+B).
Here µl and µg are the liquid and gas chemical potentials, R is the radius of the drop (with
R = r0A

1/3) and σ(T ) is the surface free energy such that 4πr2
0σ(T ) = 18 MeV at T=0.

The TτlnA term is a term introduced by Fisher to account for the power law fall-off of yield
distributions at a critical point with τ a critical exponent. The probability of forming a drop
of A nucleons is P ∝ exp(−∆G/T ) where ∆G = Gwithdrop − Gnodrop. This gives a cluster
distribution N(A), to a constant C,

N(A) =
C

Aτ
exp[

µg − µl

T
A − 4πR2σ

T
A2/3] (20.1)

On the coexistence curve of a liquid-gas phase transition µg = µl and N(A) is a monotonically
decreasing function of A. For a supersaturated system µg > µl and N(A) has a minimum

value at a critical size droplet Ac. Neglecting the τlnA term, Ac is given by A1/3
c = 2

3

4πr2

0
σ

µg−µl
.

The model fits yields of many heavy-ion collisions.

XXI. ISOSPIN FRACTIONATION IN MEAN-FIELD THEORY

Early studies of the liquid-gas phase transition were carried out using a Skyrme in-
teraction and focussed mostly on a one component system made of nucleons even though
expressions were developed for two component system of protons and neutrons [12]. The
one component aspects are given in section II of this review. The two component aspects
will now be discussed in a mean-field approach with this section based mostly on the work of
Muller and Serot [107]. Extensions of the results of [12] are now being carried out in [149] us-
ing a Skyrme interaction while the Muller-Serot analysis is based on a relativistic mean-field
model. Initial results in [149] are qualitatively similar to those of [107]. Both approaches
allow a complete calculation various thermodynamic properties, such as the pressure and
proton and neutron chemical potentials. In one component systems, the Skyrme interaction
and the relativistic mean-field model lead to an S-shaped behaviour of pressure versus vol-
ume or density at fixed temperature with stable, unstable, supersaturated and supercooled
regions. The standard Maxwell construction describes the liquid to gas phase transition with
both phases having the same pressure pL = pG, and the chemical potential µL = µG. The
equality of chemical potentials of the liquid and gas phases in phase equilibrium is equivalent
to equal areas of the regions above and below the Maxwell or vapour pressure line in the
S-shaped loop in p vs. V . For two component systems, phase equilibrium becomes more
complicated since the proton to neutron ratio can be different in the two phases because
of the symmetry energy which favours N = Z. Since the symmetry energy will be large in
the denser liquid phase, the proton-neutron asymmetry will be bigger in the gas phase than
in the liquid phase. In two component systems, the phase equilibrium conditions consist of
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setting, at fixed pressure, the proton chemical potentials in the two phases equal to each
other and similarly, the neutron chemical potentials are equal in the liquid and gas phases.
The properties of the phase separation boundaries (binodals) and instability boundaries
(spinodals) are studied as a function of a quantity labelled y = ρp/ρ which is the proton
fraction, with the neutron fraction given as ρn/ρ = 1− y, and ρ = ρn + ρp. For two compo-
nent systems, the binodals are now a surface in plots in (p, T, y) space. By contrast, for one
component systems, the binodal is a line for the vapour or Maxwell pressure vs. T which
terminates at the critical temperature T = Tc. The line is at y = 0.5 in the (p, T, y) space
of two component systems. The two dimensional binodal surface of the phase coexistence
boundary now contains a line of critical points for different values of y and a line of maximal
asymmetry. In a (p, T, y) plot of the binodal surface, the intersection of a fixed T plane
with the surface gives a loop of p vs. y. The maximal asymmetry point is at (dy/dp)T = 0
and physically corresponds to the smallest proton ratio or the largest neutron ratio on the
binodal surface at each T . The critical point is at (dp/dy)T = 0 on this loop. The loop
degenerates to a point at the critical temperature of a symmetric system y = 0.5 (see fig. 7
in [107]). If T and p are both fixed, the binodal surface has two values of y: y1(T, p) and
y2(T, p) corresponding to different values of the proton fraction in the liquid and gas phase.
These different values arise because of the difference in symmetry energy in the liquid and
the gas phase. One of the interesting conclusions of the mean-field two component model of
the liquid-gas phase transition is that the first-order transition of a one component system
becomes a second-order transition. Because of the greater dimensionality in the physical
situation, the phase transition is continuous. The role of dimensionality due to the number
of components of the system on the order of the phase transition was also pointed out by
Glendenning [150].

XXII. DYNAMICAL MODELS FOR FRAGMENTATION

The one common characteristic of all the theoretical models considered so far is that they
are static, i.e., they all assume that equilibrium is achieved and hence laws of eqiulibrium
statistical mechanics apply. A more fundamental calculation would use a transport equation.
Here two nuclei approach each other in their ground state. By solving a time dependent
equation we see what the final outcomes are.

The BUU model does start with two nuclei, in their ground states, boosted towards
each other. One does not have to introduce a temperature. The model has a mean-field as
well as hard collisions and has indeed proven to be highly successful in predicting sideward
flow, squeeze-out etc. [56]. While BUU is good for predicting expectation values of one-
body operators, it does not have fluctuations. Thus it will not produce clusters. A great
deal of effort went into introducing fluctuations in BUU type formalism. A very short list of
references are [151–155]. Unfortunately, practical calculations are extremely time consuming.
In rare cases calculations have been done to compare with experimental data [156] but the
method has not been pushed to see, for example, the rise and fall of IMF production, an
accurate estimation of the τ parameter etc. Maybe, in future such calculations will be done.

While exact calculations for heavy-ion collisions based on quantum mechanics are impos-
sible to carry out, classical calculations for ion-on-ion collisions for ≈400 particles are entirely
feasible with present day computers. This requires solving for each particle i : d~ri/dt = ~pi/m
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and d~pi/dt = −∑

j 6=i
~∇ri

V (~ri, ~rj). Here V (~ri, ~rj) is the two body interaction. One starts
at time t = 0 with initial values of ~ri, ~pi and numerically integrates out time. In a set of
three papers [157–159] Pandharipande and coworkers studied disassembly of hot classical
drops as well as collisions between cold charged argon balls containing A1 and A2 particles.
The chosen values of (A1, A2) were (108,108), (200,16) and (65,65) [157]. The interaction
between atoms was a truncated (12,6) potential and a Coulomb interaction was added. Al-
though this is thirteen years later, the reader will find reference [157] still very relevant and
revealing. As a function of time, the evolution of temperature and density of the central
region is plotted so that one can see under what initial conditions the central region reaches
spinodal instability and what the final products are in such cases. They point out that
the mass yields calculated in the disassembly of hot equilibrated drops having 216 particles
and density somewhat less than normal density is very similar to mass yield of 108+108
collisions. Thus the assumption of statistical equilibrium is valid. The authors stress that
the classical argon balls used in the study are not intended to be mock nuclei, but instead
to provide simple systems whose time evolution can be studied exactly by solving Newton’s
equations of motion. Direct comparisons with nuclear data are difficult. Nonetheless, there
are many similarities. A power law for fragment yields followed from these calculations, the
minimum value being about 1.7. Another remarkable feature is that the apparent tempera-
ture deduced from the fragment kinetic energies is much larger than that of the system. The
large kinetic energies of fragments in the simulation appear to come from collective motion
of expansion and Coulomb repulsion.

In a later paper, the Illinois group devised a simple nucleon-nucleon potential for classical
calculations of nuclear heavy ion collisions [160]. They did not use this potential to study
liquid-gas phase transition but instead used this at Bevalac energies to investigate flow
angles and transverse momenta. Later, disassembly of a collection of nucleons which start
with initial temperature and density of interest in this article, and interact via this potential
was considered by other groups [161–164]. Pratt et al. [165] used a truncated (8,4) potential
to study similar dissociation. It has not been demonstrated that such simulations apply to
nuclear cases very well since actual nuclear data for specific cases have not been compared.

The Frankfurt group proposed a simulation which they called quantum molecular dy-
namics(QMD). This was used for Bevalac energies initially. Relativistic versions exist and
are in frequent use. This has also been used for energy region of interest here. Detailed expo-
sition of the model exists [166]. Here each nucleon is represented by a Gaussian in coordinate
and momentum space with widths consistent with uncertainty principle. The centroids of
the Gaussians move but the widths are kept fixed. The centroids move under the influence

of mean-field except when the centroids move very close to each other (b <
√

σ/π). Then
they scatter as in two-body scattering. Pauli blocking is taken into account for scattering.
Because each particle is represented by a centroid in phase space with fixed widths in mo-
mentum and coorinate space, there is fluctuation built into the system and in the final stage
one can recognise clusters. In calculations reported in reference [84] fragment multiplicities
were underpredicted in the energy region of interest here. The Copenhagen group has done
simulations using a prescription which they dubbed nuclear molecular dynamics [167]. This
is quite similar to QMD.

All such simulations which provide clusters at the end are quite computer intensive.. The
clusters are easily recognised if each event is run until “asymptotic” times so that different
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clusters are well separated from each other. But that requires considerable computer time.
Quite sophisticated algorithms have been introduced for early recognition of clusters [168].
This is of practical importance.

Many other models are on the market which will simulate ion-on-ion collisions. They
were not necessarily introduced to study liquid-gas phase transition. Some references are
[169–171]. Phase transition aspects were discussed in reference [172].

A very attractive model, expanding emitting source (EES) model was proposed by Fried-
man [173]. This model assumes that initially the hot system evaporates as well as expands.
For low initial temperature the system will cease expanding and will revert towards normal
density. But beyond a certain temperature at the end of this slow expansion the system will
explode. The relationship of this model to liquid-gas phase transition will be interesting to
explore.

XXIII. OUTLOOK

The possible links of many experimental observables to expected liquid-gas phase tran-
sition in finite nuclear systems continue to be a fascinating story. Much has been learnt and
much remains to be learnt. The topic has forced nuclear physicists to delve into realms that
were not familiar to them. Necessity has prompted us to do interesting theoretical work,
for example, [145] in finite-size scaling and in general, about phase transitions in “small”
systems [174]. We are exploring ideas which are of relevance in other fields. There is a broad-
ening of the horizon which is refreshing. We foresee substantial effort in several directions,
for example, in dynamical models.

Just fifteen years ago, multifragmentation was barely mentioned in the literature. How-
ever, in the past decade tremendous progress has been made in understanding the multifrag-
mentation process and its relationship to the liquid-gas phase transition in nuclear matter.
Even though we have not found one definitive experimental signature pinpointing the phe-
nomenon, we know that a mixed phase can be created in the heavy-ion reactions, that
multifragmentation occurs within 50-200 fm/c after the initial collisions with a freeze-out
density of less than 1/3 of the normal nuclear density, and that the freeze-out temperature
is probably in the range of 4-6 MeV. In the near future, experiments will be designed to
measure excitation energy, reaction time and freeze-out densities and other observables more
precisely. Nonetheless, the availability of comprehensive experimental data has stimulated
intense interest on the theoretical front leading to better understanding of the statistical
and dynamical nature of nuclear collisions. More exciting developments will be awaiting in
the exploration of the isospin degree of freedom in the liquid-gas phase transition with the
availability of high to moderate intensity radioactive beams.

In writing this article we have also realised that a vast amount of work has been done in
this field by groups widely spread geographically. The literature on this subject is colossal.
Our reporting had to be necessarily selective, influenced largely by our own involvement and
experience. We are particularly aware that in writing an article about a subject whose scope
is this large we must have left out a significant amount of interesting work. For example,
several review articles can be written on the subject matter of the last section alone. We
finish therefore by apologising for all the omissions that occurred.
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